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1 Introduction

Financial economists have long agree that in order to better understand asset returns, but also

uncertainty about these returns, it would be necessary to break them down into several compo-

nents, each reflecting a different aspect through which an investment opportunity can be perceived,

analyzed and evaluated. Since a return (r) can be classified as either a loss (−l) if nonpositive or

a gain (g) if nonnegative, it is then natural to break it down into these two components, formally

r = g − l where l = max (0,−r) and g = max (0, r). This decomposition of returns leads also to a

similar decomposition of return uncertainty into loss and gain components, namely loss uncertainty

and gain uncertainty (also referred to as downside and upside, respectively, or in the most recent

literature as bad and good, respectively. See for example Barndorff-Nielsen et al., 2010, Patton

and Sheppard, 2015, Bekaert et al., 2015, and Kilic and Shaliastovich, 2019, just to name a few).

Likewise, investment returns are assessed over a given horizon which together with the maturity of

the payoff are part of the key elements that guide investment choices.

We argue that expectations of (per-period) asset returns uncertainty and its loss and gain com-

ponents across different investment horizons, i.e. their respective term structures, are critical for

several financial decisions and risk management. It is also important when dealing with expec-

tations of asset returns uncertainty to distinguish between physical expectations and risk-neutral

expectations. On one hand, physical expectations of uncertainty measure anticipations of how much

investors believe they could be wrong about their returns forecast. On the other hand, risk-neutral

expectations of uncertainty additionally inform about how much investors are willing to pay for

risk hedging or would be willing to require for risk compensation.

The primary goal of this article is an empirical investigation of physical and risk-neutral ex-

pectations of loss uncertainty and gain uncertainty across different investment horizons. The main

challenge resides in estimating or measuring these expectations using available financial data. Since

current period uncertainty on a future period return is not observed, a large body of the litera-

ture relies on model-free measures that can readily be computed using realized returns. A popular

measure of uncertainty is the realized variance that cumulates higher frequency squared returns

over the investment horizon. The loss component of realized variance cumulates higher frequency

squared losses while the gain component sums up higher frequency squared gains over the invest-

ment horizon. Thus, the realized variance is the sum of its loss and gain components. As thoroughly

discussed in Feunou et al. (2019), estimating or measuring risk-neutral expectations of loss and gain
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realized variance is neither feasible, nor are loss and gain variance swaps traded such that their

strikes could then be observed measures of these risk-neural expectations. It is therefore important

to rely on a measure of asset returns uncertainty for which the unobserved expectations of loss and

gain components can be consistently estimated or measured from the data.

Unlike the realized variance, the quadratic payoff is the squared of the realized return over the

investment horizon. It is also a measure of the asset returns uncertainty. The loss component of the

quadratic payoff (or quadratic loss) is the squared loss while the gain component (or quadratic gain)

is the squared gain over the investment horizon. Similar to realized variance, the quadratic payoff

is the sum of its loss and gain components. To the contrary of realized variance, both physical

and risk-neutral expectations of quadratic loss and gain can be consistently estimated or measured

from the data. We provide more details in the Internet Appendix Section A.1. We therefore rely

on the quadratic payoff when analyzing the term structure of expected loss uncertainty and gain

uncertainty.

Using a large panel of S&P500 index options data with time-to-maturity ranging from one

month to twelve months, we build model-free risk-neutral expected quadratic loss and gain term

structures. Our methodology follows from Bakshi et al. (2003) and is similar to that used to

compute the VIX index. Likewise, using high-frequency S&P500 index return data and relying on

a state-of-the-art variance forecasting model considered by Bekaert and Hoerova (2014), we build

physical expected quadratic loss and gain term structures. We ask to what extent variations in

these term structures reflect changes in the anticipated path of future loss and gain uncertainty,

and therefore, the extent to which they reflect changes in the risk premia.

Our results reveal new important findings. First, the average term structure of the physical

expected quadratic loss is downward sloping (a slope of -4.73 percent-square), while the average

term structure of the risk-neutral expected quadratic loss is upward sloping (a slope of 3.63 percent-

square). This means that, on average, investors anticipate that the (per-period) loss potential

decreases with the investment horizon, yet at the same time on the market, hedging the long-term

loss potential is more expensive than hedging the short-term loss potential of stocks. Second, the

average term structure of the physical expected quadratic gain is upward sloping (a slope of 7.09

percent-square), while the average term structure of the risk-neutral expected quadratic gain is

slightly upward sloping, almost flat (a slope of 1.01 percent-square). Likewise, this means that,

on average, investors foresee that the (per-period) gain potential increases with the investment
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horizon, yet at the same time on the market, speculating on the short-term gain potential is almost

as costly as speculating on the long-term gain potential of stocks.

Our estimates of physical and risk-neutral expectations of quadratic loss and quadratic gain

allow us to compute the associated risk premia by taking the appropriate difference between the

physical and the risk-neutral expectation. We follow Feunou et al. (2019) and measure the loss

quadratic risk premium (QRP) as the risk-neutral minus the physical expected quadratic loss. It

is the premium paid for downside risk hedging and thus a measure of downside risk. Likewise,

we measure gain QRP as the physical minus the risk-neutral expected quadratic gain. It is the

premium received for upside risk compensation and thus a measure of upside risk. We subsequently

analyze the term structures of loss and gain QRPs, and we obtain that both term structures are

upward sloping (slopes of 8.36 percent-square and 6.09 percent-square, respectively). Therefore,

on average, the (per-period) downside and upside risks are both higher for long-term investments

relative to short-term investments in stocks, and since the equity premium is a remuneration of

both types of risk, this confirms the upward sloping average term structure of the equity premium

found elsewhere in the literature.

The secondary goal of this article is to evaluate whether leading option pricing models which

predominantly appear to be special cases of the model of Andersen et al. (2015) (henceforth AFT)

are able to replicate the actual term structures of risk-neutral expected quadratic loss and gain.

Key features of the three-factor AFT model are its flexibility and its ability to completely disen-

tangle the negative from the positive jump dynamics. To enhance our understanding of the model

ingredients underlying the statistical properties of the quadratic loss and gain, we also estimate

several restricted variants of the AFT model. These include, among others, the two-factor diffusion

model of Christoffersen et al. (2009) (denoted as the baseline model AFT0), and a version of the

AFT model where the negative and positive jump dynamics are equal (denoted by AFT3). The

AFT3 model essentially represents the vast majority of option and variance swaps models studied

in the literature so far (see e.g., Bates, 2012, Christoffersen et al., 2012, Eraker, 2004, Chernov

et al., 2003, Huang and Wu, 2004, Amengual and Xiu, 2018, and Ait-Sahalia et al., 2015).1 We

find that accounting for jumps in asset prices is essential for the model to fit the term structure of

the risk-neutral expected quadratic loss and gain. The AFT0 model overestimates the risk-neutral

expected quadratic gain and underestimates the risk-neutral expected quadratic loss, but is able

1Some authors consider asymmetry in the jump size distribution (see e.g., Amengual and Xiu, 2018) However, the
jump size distribution is assumed to be constant and the time variation in jumps comes through the jump intensity
which is assumed to be the same regardless of the sign of the jump.
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to fit the term structure of the risk-neutral expected quadratic payoff. We also find that a jump

process rather than a diffusion process is the most important in fitting the term structure of the

risk-neutral expected quadratic loss, while it appears to be the opposite for the term structure of

the risk-neutral expected quadratic gain.

The AFT model is primarily used for the risk-neutral dynamics of asset prices, and we further

couple it with a pricing kernel specification that maps the risk-neutral into the physical dynamics.

All parameters are estimated to maximize the joint likelihood of risk-neutral expected quadratic

loss and gain across the term structure together with the second and third risk-neutral cumulants of

asset returns. We examine the ability of various pricing kernel specifications in matching the actual

dynamics of the term structures of physical expected quadratic loss and gain. This is equivalent

to matching the actual term structures of loss and gain QRP. Our results unequivocally point to

the importance of disentangling the price of negative jumps from the price of positive jumps. In

other words, a restricted version of the pricing kernel imposing the same price for the negative

and positive jump risk is unable to match the dynamics of the loss and gain QRP together. This

restricted version represents the vast majority of pricing kernels studied in the literature (see for

instance, Eraker, 2004, Santa-Clara and Yan, 2010, Christoffersen et al., 2012 and Bates, 2012),

and highlights its inability to account for the joint actual dynamics of the loss and gain QRP.

Our paper is related to the recent literature that analyzes the term structure of variance swaps.

Ait-Sahalia et al. (2015) and Amengual and Xiu (2018) specify reduced-form models for the term

structure of total variance. Dew-Becker et al. (2017) investigates the ability of existing structural

models in fitting the observed term structure of variance swaps. We contribute to this literature by

investigating the term structures of the two variance components. Our paper also relates to another

strand of the literature documenting the importance of analyzing loss and gain components of

variance (risk-neutral or physical) and VRP. Barndorff-Nielsen et al. (2010) provide the theoretical

arguments supporting the splitting of the total realized variance into a loss and gain components.

The remainder of the paper is organized as follows. Section 2 introduces definitions and nota-

tions of all quantities, the data, and the methodology for constructing the risk-neutral and physical

term structure of expected quadratic loss and gain, and presents key empirical facts that any

economically sound model should be able to replicate. Section 3 introduces the AFT model and

provides some details on its properties, including the implied closed-form for both the risk-neutral

and physical expectation of the quadratic loss and gain. Section 4 provides detail on the estimation
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on the AFT model. Section 5 evaluates the ability of the AFT model and its variants in fitting the

empirical facts. Section 6 concludes.

2 Methodology, Data and Preliminary Analysis

In this section we start by introducing the quadratic payoff, and its loss and gain components,

namely, the quadratic loss and the quadratic gain. Next, we introduce a heuristic theoretical

framework to understand the difference between the quadratic loss and the quadratic gain. We

discuss the methodology to measure the risk-neutral and physical expectations of the quadratic

payoff, the quadratic loss and the quadratic gain, over a given investment horizon. For the purpose

of computing these term structures, we present the data and provide descriptive statistics. Fi-

nally, we provide a preliminary analysis based on principal components extracted from these term

structures.

2.1 Definitions

Let St denote the S&P 500 index price at the end of day t, and for any investment horizon τ , let

rt,t+τ denote its (log) return from end of day t to end of day t+ τ , given by rt,t+τ = ln (St+τ/St).

Both the log return rt,t+τ and the quadratic payoff r2
t,t+τ are subject to a gain-loss decomposition

as follows:

rt,t+τ = gt,t+τ − lt,t+τ and r2
t,t+τ = g2

t,t+τ + l2t,t+τ , (1)

where the gain gt,t+τ = max (0, rt,t+τ ) and the loss lt,t+τ = max (0,−rt,t+τ ), represent the positive

and negative parts of the asset payoff, respectively. In other words, the gain and the loss are

nonnegative amounts flowing in and out of an average investor’s wealth, respectively. Since a

positive gain and a positive loss cannot occur simultaneously, we observe that gt,t+τ · lt,t+τ = 0.

This gain loss decomposition of an asset’s payoff is exploited as an asset pricing context by Bernardo

and Ledoit (2000).

Our goal in this article is to study how the time series dynamics of risk-neutral expectations

EQ
t

[
l2t,t+τ

]
and EQ

t

[
g2
t,t+τ

]
, and of the physical expectations EP

t

[
l2t,t+τ

]
and EP

t

[
g2
t,t+τ

]
, vary with

the investment horizon τ , where the exponents Q and P indicate that the values are under the

risk-neutral and the physical measures, respectively. Knowledge of these term structures can be

relevant in various risk management contexts. Indeed, one can learn about investors’ anticipations

of the degree of loss and gain uncertainty every day for each investment horizon, and also how much
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investors are willing to pay for hedging, or to require for compensation of the associated risks over

a given investment horizon.

Given the risk-neutral and physical expectations of the same random quantity, one can readily

take their difference to measure the associated risk premium. Following Feunou et al. (2019), we

define the difference between the risk-neutral and the physical expectations of the quadratic payoff

as the quadratic risk premium (QRP), which the loss and gain components, called loss QRP and

gain QRP, and denoted by QRP lt (τ) and QRP gt (τ), respectively, are formally given by:

QRP lt (τ) ≡ EQ
t

[
l2t,t+τ

]
− EP

t

[
l2t,t+τ

]
and QRP gt (τ) ≡ EP

t

[
g2
t,t+τ

]
− EQ

t

[
g2
t,t+τ

]
. (2)

Equation (2) shows that loss QRP (QRP l) represents the premium paid for the insurance against

fluctuations in loss uncertainty, while the gain QRP (QRP g) is the premium earned to compensate

for the fluctuations in gain uncertainty. Thus, the (net) QRP (QRP ≡ QRP l −QRP g) represents

the net cost of insuring fluctuations in loss uncertainty, that is the premium paid for the insurance

against fluctuations in loss uncertainty net of the premium earned to compensate for the fluctuations

in gain uncertainty. Our study of the term structures of the risk-neutral and the physical expected

quadratic loss and gain naturally leads to examining the term structures of loss and gain QRPs.

2.2 Dissecting the Quadratic Payoff into Loss and Gain: A Theory

For simplicity, let us denote the risk-neutral and physical expectations as the following:

µQ+
n (t, τ) ≡ EQ

t

[
gnt,t+τ

]
, µQ−n (t, τ) ≡ EQ

t

[
lnt,t+τ

]
, and µQn (t, τ) ≡ EQ

t

[
rnt,t+τ

]
, (3)

µP+
n (t, τ) ≡ EP

t

[
gnt,t+τ

]
, µP−n (t, τ) ≡ EP

t

[
lnt,t+τ

]
, and µPn (t, τ) ≡ EP

t

[
rnt,t+τ

]
, (4)

To understand the difference between µQ+
2 (t, τ) and µQ−2 (t, τ), we follow Duffie et al. (2000),

µQ−2 (t, τ) =
EQ
t

[
r2
t,t+τ

]
+ ΛQ (t, τ)

2

µQ+
2 (t, τ) =

EQ
t

[
r2
t,t+τ

]
− ΛQ (t, τ)

2
, (5)

where ΛQ (t, τ) , the wedge between the risk-neutral expected quadratic loss and gain, is given by:

ΛQ (t, τ) =
2

π

∫ +∞

0

Im
(
ϕ

(2)
t,τ (−iv)

)
v

dv (6)
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with ϕt,τ (·) being the time t conditional risk-neutral moment-generating function of rt,t+τ , and

ϕ
(2)
t,τ (·) its second order derivative and Im() refers to the imaginary coefficient of a complex number.

From equation (5), it is apparent that, studying the term structure of µQ−2 (t, τ) and µQ+
2 (t, τ)

amounts to studying the term structure of the quadratic payoff EQ
t

[
r2
t,t+τ

]
and the term structure

of ΛQ (t, τ) . Several papers in the literature have already dealt successfully with EQ
t

[
r2
t,t+τ

]
, and

the consensus seems to be that a two-factor diffusion model provide a good statistical representation

(see Christoffersen et al., 2009). We now try to understand conceptually the potential drivers of

the wedge ΛQ (t, τ) .

We use the following power series expansion of the moment generating function ϕt,τ (·):

ϕt,τ (v) =
∞∑
n=0

vn

n!
µQn (t, τ) ,

to establish that

ΛQ (t, τ) = lim
v̄→∞


∞∑
j=1

(−1)j v̄2j−1

(2j − 1)(2j − 1)!
µQ2j+1 (t, τ)

 . (7)

which is a weighted average of odd high order non-central moments. Since only the odd high

moments are included, the wedge ΛQ (t, τ) is closely related to the asymmetry in the distribution

of rt,t+τ . In the summation, when focusing on j = 1, it is apparent that ΛQ (t, τ) is the opposite

of the third order non-central moment µQ3 (t, τ) (up to a positive multiplicative constant). Recall

that µQ3 (t, τ) is related to the first three central moments as following:

µQ3 (t, τ) = κQ3 (t, τ) + 3µQ1 (t, τ)κQ2 (t, τ) +
[
µQ1 (t, τ)

]3
,

were κQn (t, τ) ≡ EQ
t

[(
rt,t+τ − µQ1 (t, τ)

)n]
. Hence, we conclude that the wedge between the risk-

neutral expected quadratic loss and gain increases with the asymmetry in the risk-neutral distri-

bution. A negative skewness implies larger risk-neutral expected quadratic losses, while a positive

skewness yields the opposite effect. The wedge between the risk-neutral expected quadratic loss

and gain still exist and always negative when the distribution is symmetric (all odd order central

moments for a symmetric distribution are zero). In that case, the wedge increases in absolute value

as the volatility increases.
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2.3 Constructing Expectations

2.3.1 Inferring the Risk-neutral Expectation from Option Prices

In practice, previous literature estimates the risk-neutral conditional expectation of quadratic

payoff directly from a cross-section of option prices. Bakshi et al. (2003) provide model-free formulas

linking the risk-neutral moments of stock returns to explicit portfolios of options. These formulas

are based on the basic notion, first presented in Bakshi and Madan (2000), that any payoff over a

time horizon can be spanned by a set of options with different strikes with the same maturity as

the investment horizon.

We adopt the notation in Bakshi et al. (2003), and define Vt (τ) as the time-t price of the τ -

maturity quadratic payoff on the underlying stock. Bakshi et al. (2003) show that Vt (τ) can be

recovered from the market prices of out-of-the-money (OTM) call and put options as follows:

Vt (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK +

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK, (8)

where St is the time-t price of underlying stock, and Ct (τ ;K) and Pt (τ ;K) are time-t option prices

with maturity τ and strike K, respectively. The risk-neutral expected quadratic payoff is then

EQ
t

[
r2
t,t+τ

]
= erf τVt (τ) , (9)

where rf is the continuously compounded interest rate.

We compute Vt (τ) on each day and maturity. In theory, computing Vt (τ) requires a continuum

of strike prices, while in practice we only observe a discrete and finite set of them. Following Jiang

and Tian (2005) and others, we discretize the integrals in equation (8) by setting up a total of 1001

grid points in the moneyness (K/St) range from 1/3 to 3. First, we use cubic splines to interpolate

the implied volatility inside the available moneyness range. Second, we extrapolate the implied

volatility using the boundary values to fill the rest of the grid points. Third, we calculate option

prices from these 1001 implied volatilities using the Black-Scholes formula proposed by Black and

Scholes (1973).2 Next, we compute Vt (τ) if there are four or more OTM option implied volatilities

(e.g. Conrad et al., 2013 and others). Lastly, for example, to obtain Vt (30) on a given day, we

interpolate and extrapolate Vt (τ) with different τ . This process yields a daily time series of the

risk-neutral expected quadratic payoff for each maturity τ = 30, 60, . . . , 360 days.

2Since the S&P 500 options are European, we do not have issues with the early exercise premium.
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Note that the price of the quadratic payoff Vt (τ) in equation (8) is the sum of a portfolio of

OTM call options and a portfolio of OTM put options:

Vt (τ) = V g
t (τ) + V l

t (τ) , (10)

where:

V l
t (τ) =

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK and V g

t (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK. (11)

Feunou et al. (2019) analytically prove that V l
t (τ) is the price of the quadratic loss, and V g

t (τ) is

the price of the quadratic gain. We present that proof in the Internet Appendix accompanying this

paper. Hence, the risk-neutral expectation of quadratic loss and gain are:

EQ
t

[
l2t,t+τ

]
= erf τV l

t (τ) and EQ
t

[
g2
t,t+τ

]
= erf τV g

t (τ) . (12)

2.3.2 Estimating the Physical Conditional Expected Quadratic Payoff

A regression model can be used to estimate the expectations of the quadratic payoff and trun-

cated returns over different periods using actual returns data. To compute these expectations, we

assume that, conditional on time-t information, log returns rt,t+τ have a normal distribution with

mean µt,τ = Et [rt,t+τ ] = Z>t βµ and variance σ2
t,τ = Et [RVt,t+τ ], where Et [RVt,t+τ ] = Z>t βσ and

RVt,t+τ is the realized variance between end of day t and end of day t+ τ . We have then:

Et
[
r2
t,t+τ

]
= µ2

t,τ + σ2
t,τ and

 Et
[
l2t,t+τ

]
=

(
µ2
t,τ + σ2

t,τ

)
Φ
(
−µt,τ
σt,τ

)
− µt,τσt,τφ

(
µt,τ
σt,τ

)
Et
[
g2
t,t+τ

]
=

(
µ2
t,τ + σ2

t,τ

)
Φ
(
µt,τ
σt,τ

)
+ µt,τσt,τφ

(
µt,τ
σt,τ

)
,

(13)

under the log-normality assumption, where Φ (·) and φ (·) are the standard normal cumulative

distribution functions and density, respectively. An estimate of µt,τ is obtained as the fitted value

from a linear regression of returns onto the vector of predictors, while an estimate of σ2
t,τ is obtained

as the fitted value from a linear regression of the total realized variance onto the same predictors.

Those estimates are further plugged into the formulas in equation (13) to obtain estimates of the

physical expectations of the squared returns and truncated returns.

The specification of predictors in Z has been documented in a long list of previous literature. It

is now widely accepted that models based on high frequency realized variance dominates standard
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GARCH-type models (e.g., Chen and Ghysels, 2011) and thus, we follow this literature. Bekaert

and Hoerova (2014) examine state-of-the-art models in the literature and consider the most general

specification, where Z is a combination of a forward-looking volatility measure, the continuous

variations, and the jump variations and negative returns in the last day, last week or last month:

RVt,t+τ = c+ αV IX2
t + βmCt−21,t + βwCt−5,t + βdCt

+γmJt−21,t + γwJt−5,t + γdJt

+δmlt−21,t + δwlt−5,t + δdlt−1,t + ε
(τ)
t+τ , (14)

where Ct and Jt are respectively continuous and discontinuous components of the daily realized

variance RVt, Ct−h,t and Jt−h,t respectively aggregate Ct−j and Jt−j for j = 0, 1, . . . , h−1, i.e. over

an horizon h, and lt−h,t is the loss component of the return from day t−h to day t. The conditional

variance σ2
t,τ is the fitted time series from the regression (14), for values of τ = 21, 42, . . . , 252

days. Likewise, the conditional mean µt,τ is the fitted time series from the regression (14) where

the left-hand side is replaced by the τ -period log returns rt,t+τ .

Unlike the log returns and the realized variance which are closed to temporal aggregation, the

quadratic payoff and its loss and gain components are not. This suggests that the term structure

of physical expectations of the quadratic payoff and its components are unlikely to be a flat line

unless the mean µt,τ is negligible for all considered horizons.

2.4 Data

2.4.1 Option Data

For the estimation of the S&P 500 risk-neutral quadratic payoff, we rely on S&P 500 option

prices obtained from the IvyDB OptionMetrics database for the January 1996 to December 2015

period. We exclude options with missing bid-ask prices, missing implied volatility, zero bids, neg-

ative bid-ask spreads, and options with zero open interest (e.g, Carr and Wu, 2009). Following

Bakshi et al. (2003), we restrict the sample to out-of-the-money options. We further remove op-

tions with moneyness lower than 0.2 or higher than 1.8. To ensure that our results are not driven

by misleading prices, we follow Conrad et al. (2013) and exclude options that do not satisfy the

usual option price bounds e.g. call options with a price higher than the underlying, and options

with less than 7 days to maturity.
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2.4.2 Return Data

To construct the physical realized variance and perform volatility forecasts, we obtain intradaily

S&P 500 cash index data spanning the period from January 1990 to December 2015 from Tick-

Data.com, for a total of 6, 542 trading days. On a given day, we use the last record in each

five-minute interval to build a grid of five-minute equity index log-returns. Following Andersen et

al. (2001, 2003) and Barndorff-Nielsen et al. (2010), we construct the realized variance on any given

trading day t, where rj,t is the jth five-minute log-return, and nt is the number of (five-minute)

intradaily returns recorded on that day.3 We add the squared overnight log-return to the realized

variance. The realized variance between day t and t + τ are computed by accumulating the daily

realized variances.

2.5 Preliminary analysis

2.5.1 The Term Structure of the Risk-Neutral Expected Quadratic Payoff

To estimate EQ
t

[
l2t,t+τ

]
or EQ

t

[
g2
t,t+τ

]
for each maturity τ , we use options with maturity close

to τ and do interpolations.4 In Panel A of Figure 1, we plot the time series average of risk-neutral

expected quadratic payoff and its loss and gain components for maturities of 1, 3, 6, 9 and 12

months. We find that the average term structures of the risk-neutral expected quadratic payoff

and its loss component are, in general, upward sloping. On the other hand, we find that the term

structure of risk-neutral expected gain quadratic payoff is flat. This last result is consistent with

the findings of Dew-Becker et al. (2017) who find that the term structure of the upside component

of the VIX is flat. 5

To investigate time variations in these term structures, in Panel A and B of Figure 2 we plot the

6-month (the level) and the 12- minus 2-month (the slope) for the risk-neutral expected quadratic

3On a typical trading day, we observe nt = 78 five-minute returns.
4In the data, we do not always observe options with the exact maturity τ . In order to find EQ

t

[
l2t,t+τ

]
or EQ

t

[
g2t,t+τ

]
at the exact maturity τ we either interpolate or extrapolate to find the exact value. For example, if we wish to find
EQ
t

[
l2t,t+30

]
, i.e. with maturity τ = 30 days, we interpolate between EQ

t

[
l2t,t+τ1

]
and EQ

t

[
l2t,t+τ2

]
to obtain EQ

t

[
l2t,t+30

]
,

where τ1 is the closest observed maturity below 30 days, and τ2 is the closest observed maturity over 30 days. In
cases where we do not observe τ2 in the data, we extrapolate τ1 to obtain the exact maturity.

5Dew-Becker et al. (2017) also compute the term structure of forward variance prices as F rv,τt ≡ EQ
t [RVt+τ−1,t+τ ].

The forward variance price F rv,τt is essentially the month t risk-neutral expectation of realized variance from end of
month t + τ − 1 to end of month t + τ . In the Internet Appendix, we compute forward prices for the risk-neutral
expected quadratic payoff and its components. In Figure A1 of the Internet Appendix, we plot the term structure of
average forward prices for the quadratic payoff and its loss and gain components. We find that both the level and
slope of the total quadratic payoff is similar to Dew-Becker et al. (2017). In contrast to their approach, we are also
able to compute the term structure of average forward prices for the quadratic loss and gain, and find that they are
in general upward sloping.
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payoff and its components, respectively. We find that both the level and the slope display important

time variations, and have spikes and troughs during crises. We also notice that, although the slopes

are mostly positive, they are negative during crises. These observed patterns are in line with the

fact that during crises investors expect a recovery in the long-run rather than the short-run.

2.5.2 The Term Structure of the Physical Expected Quadratic Payoff

In Panel B of Figure 1, we plot the time series average of the term structure of physical expected

quadratic payoff and its loss and gain components for maturities of 1, 3, 6, 9 and 12 months. We

find that the term structure of the expected quadratic loss is downward sloping. Since the quadratic

loss is a measure of loss uncertainty, this suggests that investors face more uncertainty about losses

in the short-run vs. the long-run. On the other hand, we find that the term structure of the

expected quadratic gain is upward sloping. Since the expected quadratic gain is a measure of the

gain uncertainty, this suggests that investors face more uncertainty about gains in the long-run vs.

short-run. Comparing their term structures, we observe that the level of the expected quadratic

gain dominates the level of the expected quadratic loss across all horizons, and even more so in

the long-run, leading to the upward sloping pattern in the total expected quadratic payoff. The

relatively larger values of the expected quadratic gain are consistent with the fact that the S&P

500 cash index has historically yielded a positive annual return of 7%.

To evaluate the time variation in these term structures, in Panel C and D of Figure 2, we

plot the 6-month maturity (the level) and the 12- minus 2-month maturity (the slope) for the

expected quadratic payoff and its components, respectively. As for its risk-neutral counterpart, we

find substantial variations in both the level and the slope. We find that the expected quadratic

payoff and expected quadratic gain have in general positive and occasionally negative slopes. On

the other hand, the expected quadratic loss slopes are almost always negative and very negative

during the 2008 financial crisis. These observed patterns are in line with the fact that investors

expect a growth opportunity in the long-run rather than the short-run.

Further, in Figure 1, we observe a common upward sloping pattern for the term structures of

the risk-neutral and physical expected quadratic payoff and its components. The only exception

is the physical expected quadratic loss which is downward sloping. Bakshi et al. (2003) show that

under certain conditions, the risk-neutral distribution can be obtained by exponentially tilting the

real-world density, with the tilt determined by the risk-aversion of investors. This means that

the observed upward sloping risk-neutral expected quadratic loss vs. the downward sloping term
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structure of the physical quadratic loss may be explained by investors’ increasing risk-aversion as

the investment horizon increases.

In Table 1, we present time series means of the risk-neutral and physical expected quadratic

payoff together with their loss and gain components. For each of the mean we also report, in

parentheses, Newey and West (1987) adjusted standard errors. The mean values for the risk-

neutral expected quadratic payoff increase as the maturity horizon increases from 45.30 at 1 month

to 49.94 at 12 months in monthly percentage squared units. The mean values for the physical

expected quadratic payoff are much lower but also increase as the maturity horizon increases from

26.28 at 1 month to 28.64 at 12 months. The risk-neutral expected quadratic loss are much higher

than the risk-neutral expected quadratic gain for any given horizon and the wedge is the same for

different maturity horizons. For example, at 2 months, the risk-neutral expected quadratic loss is

31.16 and the risk-neutral expected quadratic gain is 14.39; the wedge is about 17 which is similar

to the the wedge at 4, 6, 8 and 12 months. However, the physical expected quadratic loss is much

lower than the physical expected quadratic gain for any given horizon and this wedge is increasing

as the horizon increases. For example, at 2 months, the physical expected quadratic loss is 10.05

and the physical expected quadratic gain is 16.45; the wedge is about 6 and this wedge is strictly

increasing to roughly 16 at 12 months. We also see that the standard errors of the means for all

these quantities are decreasing in the maturity. Finally, we find that all the means are statistically

different from zero.

2.5.3 The Term Structure of the Quadratic Risk Premium

Next, we turn to study the term structure of the quadratic risk premium. In Table 1, we also

present time series means of the quadratic risk premium and its loss and gain components. On

average, the quadratic risk premium is positive, equal to 19.04, 20.01 and 21.32 at 1, 6, 12 months,

respectively. Both the loss quadratic risk premium and the gain quadratic risk premium are positive.

However, the loss quadratic risk premium is dominating the gain quadratic risk premium at all

horizons. For example, QRP l is 21.98 while QRP g is 2.91 at 3 months; QRP l is 26.89 while QRP g

is 5.78 at 9 months. The average QRP g is small at 1-month horizon and not statistically different

from zero. In general, we observe that the standard error of the average quadratic risk premium

(and its components), which represent the insurance cost (either against downside risk, upside risk

or the net cost of hedging downside risk), increases with the horizon. Nevertheless, apart from the

1-month average QRP g, we find that all means are significantly different from zero.
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2.5.4 Principal Component Analysis

In general, structural and reduced form asset pricing models have a very tight factor structure,

implying that different expectations (whether risk-neutral or physical) are all driven by a very

low number of factors (e.g., in reduced-form option pricing models the largest number of factors

considered in the literature so far is three). Nevertheless, our analysis deals with the joint term

structures of two uncertainty components (loss and gain) under two different probability measures

(Q and P). To pin down the number of factors observed in the data, we run a principal component

analysis of the term structure of four quantities: the loss and gain components of the physical

and risk-neutral expected quadratic payoff. Alternatively, one can choose to use the loss and gain

components of the physical expected quadratic payoff and the QRP or the loss and gain components

of the risk-neutral expected quadratic payoff and the QRP. There is no difference between these

three choices.

Table 2 shows the explanatory powers of the first 3 principle components. We find that the

first 3 principal components are enough to explain 91.39% of the variation of the term structure of

the loss and gain physical expected quadratic payoff and the QRP (there are 48 variables because

we include four quantities with 12 maturities). The first principal component explains 56.76%, the

second explains 26.29% and the third explains 7.98% of the variations. The immediate implication

of these findings is that any model (whether reduced-form or structural) that aims to jointly fit

these various terms structures should include at least three factors.

3 A Model for the Joint Term Structure of Quadratic Loss and

Gain

In search of a flexible reduced-form model to accommodate different kinds of distribution asymmetry

and the term structure of µQ−2 (t, τ) and µQ+
2 (t, τ), we study the recent model proposed by Andersen

et al. (2015). This model is ideal for our analysis (1) it is built to disentangle the dynamic of the

positive and negative jumps; (2) it is a three-factor framework which would maximize the model

chances of fitting the term structure of expected quadratic loss and gain and their risk premium

since we find three principal components are needed to fit the targeted term structures in section

2.5.4; (3) Since it is an affine model, it is tractable and enables us to compute all the quantities

of interest in closed-form. In this section, we discuss the Andersen et al. (2015) model and some
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variants of this three-factor model. We use the two-factor diffusion model of Christoffersen et al.

(2009) as the baseline model. Finally, we introduce a set of different specifications for the pricing

kernel, including the baseline specification in which jumps are not priced.

3.1 The Andersen et al. (2015)’s Risk-neutral Specification

In the three-factor jump-diffusive stochastic volatility model of Andersen et al. (2015), the under-

lying asset price evolves according to the following general dynamics (under Q):

dSt
St−

= (rf,t − δt) dt+
√
V1tdW

Q
1t +

√
V2tdW

Q
2t + η

√
V3tdW

Q
3t +

∫
R2

(ex − 1)µQ (dt, dx, dy)

dV1t = κ1 (v̄1 − V1t) dt+ σ1

√
V1tdB

Q
1t + µ1

∫
R2

x21{x<0}µ (dt, dx, dy)

dV2t = κ2 (v̄2 − V2t) dt+ σ2

√
V2tdB

Q
2t

dV3t = −κ3V3tdt+ µ3

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]
µ (dt, dx, dy) ,

where rf,t and δt refer to the instantaneous risk-free rate and the dividend yield, respectively,(
WQ

1t ,W
Q
2t ,W

Q
3t , B

Q
1t, B

Q
2t

)
is a five-dimensional Brownian motion with corr

(
WQ

1t , B
Q
1t

)
= ρ1 and

corr
(
WQ

2t , B
Q
2t

)
= ρ2, while the remaining Brownian motions are mutually independent, µQ (dt, dx, dy) ≡

µ (dt, dx, dy)− νQt (dx, dy) dt, where νQt (dx, dy) is the risk-neutral compensator for the jump mea-

sure µ, and is assumed to be

νQt (dx, dy) =
{(
c−t 1{x<0}λ−e

−λ−|x| + c+
t 1{x>0}λ+e

−λ+|x|
)

1{y=0}

+c−t 1{x=0,y<0}λ−e
−λ−|y|

}
dx⊗ dy,

(15)

where time-varying negative and positive jumps are governed by distinct coefficients: c−t and c+
t ,

respectively. These coefficients evolve as affine functions of the state vectors

c−t = c−0 + c−1 V1t− + c−2 V2t− + c−3 V3t−, c+
t = c+

0 + c+
1 V1t− + c+

2 V2t− + c+
3 V3t−.

These three factors have distinctive features: V2t is a pure diffusion process, V3t is a pure jump

process, while innovation in V1t combine a diffusion and a jump component. Furthermore, one of

the key features of the AFT model is its ability to break the tight link between expected negative

and positive jump variation imposed by other traditional jump diffusion models. More precisely,
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the AFT model implies that

EQ
t [NJt,t+τ ] =

2

λ2
−τ

EQ
t

[∫ t+τ

t
c−s ds

]
, EQ

t [PJt,t+τ ] =
2

λ2
+τ

EQ
t

[∫ t+τ

t
c+
s ds

]
, (16)

where PJt,t+τ and NJt,t+τ are the positive and negative jump variations between t and t + τ ,

respectively.

To better understand the key features of this general model to match the observed term struc-

tures of risk-neutral expected quadratic loss and gain, we focus on two dimensions: (1) The number

of factors. Compared to the three-factor framework, we ask if two factors are enough and which

two-factor alternatives generate the best fit; (2) The model’s ability to differentiate between the

negative and positive jump distribution. We ask if the symmetric jump distribution can still fit the

term structures. We label the unrestricted general model AFT4 and consider the following nested

specifications:

• AFT0, there is no jumps. This corresponds to the two-factor diffusion model studied exten-

sively in Christoffersen et al. (2009). This is equivalent to suppressing all the jumps related

components (η = 0 and µ1 = 0) and the third factor V3t.

• AFT1, there is no pure-jump process. This corresponds to suppressing V3t.

• AFT2, there is no pure-diffusion process. This corresponds to suppressing V2t. In this model

both variance factors V1t and V3t jump, implying that it can be used to judge the benefit

of having jumps in volatility, something that the option pricing literature has been debating

quite a bit about.

• AFT3, the expected negative jump variation equals the expected positive jump variation.

This corresponds to a three-factor model which assumes the same distribution for positive

and negative jumps. It is equivalent to imposing that λ− = λ+, and c−t = c+
t . The AFT3 is

representative of most of existing option pricing and variance swap models as it does not dif-

ferentiate between positive and negative jumps intensity (see e.g. Bates, 2012, Christoffersen

et al., 2012, Eraker, 2004, Chernov et al., 2003, Huang and Wu, 2004, Amengual and Xiu,

2018, and Ait-Sahalia et al., 2015).

One interesting model variation is the 3-factor model in which η = 0. This makes V3t a pure

jump process in the sense that it only drives the jump intensity while not entering in the diffusive
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volatility.6 We compare two 3-factor models in which η = 0 and η 6= 0 in the Internet Appendix

and find that η 6= 0 is important for accurate pricing of truncated second moments.

3.2 The Radon-Nikodym Derivative

In this paper, our goal is to understand statistical properties of stock returns distribution that

are essential to reproduce the observed term structures of µQ+
2 (t, τ), µQ−2 (t, τ) and the stochastic

discount factor specifications able to replicate the observed spreads µQ−2 (t, τ) − µP−2 (t, τ) and

µQ+
2 (t, τ) − µP+

2 (t, τ) . To do that, we need to specify a Radon-Nikodym Derivative (the law of

change of measure). We specify the most flexible Radon-Nikodym derivative preserving the same

model structure under the physical dynamic. Our Radon-Nikodym derivative is the product of the

two derivatives separately governing the compensation of continuous variations and jump variations:

(
dQ

dP

)
t

=

(
dQ

dP

)c
t

(
dQ

dP

)j
t

,

where (
dQ

dP

)c
t

= exp

{∫ t

0
θr>s dW P

s +

∫ t

0
θ̄v>s dB̄P

s −
1

2

∫ t

0

(
θr>s θrs + θ̄v>s θ̄vs

)
ds

}
,

and (
dQ

dP

)j
t

= E
(∫ t

0

∫
R2

Ψs (x, y)µP (ds, dx, dy)

)
,

with E referring to the stochastic exponential, dW P
jt ≡ dWQ

jt + θrt (j) dt, dB̄P
jt ≡ dB̄Q

jt + θ̄vt (j) dt,

dBQ
jt = ρjdW

Q
jt +

√
1− ρ2

jdB̄
Q
jt and µP (dt, dx, dy) = µ (dt, dx, dy)− νPt (dx, dy) dt.

With the appropriate choice of the price of risk parameters θrt , θ̄
v
t and the physical compensator

νPt (dx, dy) , we can show that the resulting physical dynamic preserves the exact structure as the

risk-neutral dynamic. In particular, the price of jump risk, Ψt (x, y) , is given by:

Ψt (x, y) ≡ νQt (dx, dy)

νPt (dx, dy)
− 1,

where

νQt (dx, dy)

νPt (dx, dy)
=


c+t
cP+t

λ+
λP+

exp
(
−
(
λ+ − λP+

)
x
)

x > 0 y = 0

c−t
cP−t

λ−
λP−

exp
((
λ− − λP−

)
x
)

x < 0 y = 0

c−t
cP−t

λ−
λP−

exp
((
λ− − λP−

)
y
)

x = 0 y < 0

.

6Several contributions including Santa-Clara and Yan (2010), Christoffersen et al. (2012), and Andersen et al.
(2015) find evidence for a pure jump component in the pricing of S&P500 options
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Is the premium inherent in hedging bad shocks substantially different from the one required to be

exposed to good shocks? The evidence presented in Section 2 overwhelmingly points to two very

different premia. Another more challenging question is if we need to specify a maximum flexible

pricing kernel where all the parameters for jumps intensities are shifted from Q-measure to P-

measure by different amounts, or if there is a parsimonious specification (imposes more restrictions

between the Q- and P-dynamics) that is able to simultaneously replicate the observed dynamic

of the term structures of the loss and gain QRP. To shed light on these issues, in the estimation

investigation we distinguish between the following restrictions on the Radon-Nikodym derivative

(where the unrestricted specification is labeled RND4):

1. RND0: Jumps are not priced, this is equivalent to imposing cP+
j = c+

j , c
P−
j = c−j , for j =

0, 1, 2, 3 λP− = λ− and λP+ = λ+. Note that this is the equivalent of setting Ψt (x, y) = 0, or

equivalently
(
dQ
dP

)j
t

= 1.

2. RND1: The price of positive jumps equals the price of negative jumps, or more formally

Ψt (x, y) is independent of the sign of x. Note that this is the implicit restriction imposed by

traditional affine jump diffusion option pricing models, e.g. Eraker (2004),Santa-Clara and

Yan (2010), Christoffersen et al. (2012) and Bates (2012).

3. RND2: Negative jumps are not priced ⇐⇒ λP− = λ−, cP−j = c−j , for j = 0, 1, 2, 3,.

4. RND3: Positive jumps are not priced ⇐⇒ λP+ = λ+, cP+
j = c+

j , for j = 0, 1, 2, 3,.

4 Estimation

We largely rely on the recent paper Feunou and Okou (2018) which proposes to estimate affine

option pricing models using risk-neutral moments instead of raw option prices. Unlike option prices,

cumulants (central moments) are linear functions of unobserved factors. Hence using cumulants

enables us to circumvent major challenges usually encountered in the estimation of latent factor

option pricing models.

Given that the AFT model is affine, the linear Kalman filter appears as a natural estimation

technique. The AFT model can easily be casted in a (linear) state-space form where the measure-

ment equations relate the observed or model-free risk-neutral cumulants to the latent factors (state

variables), and the transition equations describe the dynamic of these factors. However, unlike
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the setup in Feunou and Okou (2018), we are mainly interested in the term structures of expected

quadratic loss and gain which turn out to be non-linear functions of the factors. Hence we will have

two sets of measurement equations: (1) linear, which relate the risk-neutral variances and third

order cumulants to the factors; (2) non-linear, which relate the risk-neutral expected quadratic

loss and gain to the factors. We will use only the first set of measurement equations in the linear

Kalman filtering step, and conditional on the filtered factors we will compute the likelihood of the

risk-neutral expected quadratic loss and gain.

4.1 Risk-neutral Cumulants Likelihood

On a given day t, we stack together the nth-order risk-neutral cumulant observed at distinct matu-

rities in a vector denoted by CUM
(n)Q
t = (CUM

(n)Q
t,τ1

, ..., CUM
(n)Q
t,τJ

)>, where n ∈ {2, 3}. We further

stack the second and third cumulant vector in CUMQ
t =

(
CUM

(2)Q>
t , CUM

(3)Q>
t

)>
to build a

2J × 1 vector. This implies the following linear measurement equation:

CUMQ
t = Γcum0 + Γcum1 Vt + Ω1/2

cumϑ
cum
t , (17)

where the dimension of the unobserved state vector (Vt) is 3. Notably, Γcum0 and Γcum1 are 2J × 1

and 2J × 3 matrices of coefficients whose analytical expressions depend explicitly on Q-parameters

as shown in Feunou and Okou (2018). The last term in Equation 17 is a vector of observation

errors, where Ωcum is a 2J × 2J diagonal covariance matrix, and ϑcumt denotes a 2J × 1 vector of

independent and identically distributed (i.i.d.) standard Gaussian disturbances.

As shown in Feunou and Okou (2018), the transition equations for the three factors in the AFT

model is:

Vt+1 = Φ0 + Φ1Vt + εt+1, (18)

where

Φ0 ≡ ∆tKP
0 , KP

0 =


κP1 v̄

P
1 + µ1λ̄

P
−c

P−
0

κP2 v̄
P
2

µ3λ̄
P
−c

P−
0



Φ1 ≡ I3 + ∆tK
P
1 , KP

1 =


−κP1 + µ1λ̄

P
−c

P−
1 µ1λ̄

P
−c

P−
2 µ1λ̄

P
−c

P−
3

0 −κP2 0

µ3λ̄
P
−c

P−
1 µ3λ̄

P
−c

P−
2 −κP3 + µ3λ̄

P
−c

P−
3

 ,
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I3 is a 3 × 3 identity matrix, λ̄P− = 2/
(
λP−
)2

, and ∆t is set to 1/252 to reflect a daily time step.

Moreover, the transition noise is εt+1 ≡ (ε1t+1, ε2t+1, ε3t+1)>, with a conditional covariance matrix

V arPt (εt+1) = ∆tΣ (Vt) , where

Σ (Vt) =


σ2

1V1t + µ2
1λ

P∗
− c

P−
t 0 µ1µ3 (1− ρ3)λP∗− c

P−
t

0 σ2
2V2t 0

µ1µ3 (1− ρ3)λP∗− c
P−
t 0 µ2

3

[
(1− ρ3)2 + ρ2

3

]
λP∗− c

P−
t

 ,

where λP∗− = 24/
(
λP−
)4

.

The system (17)-(18) gives the state-space representation of the AFT model. The marginal

moments (mean and variance) of the latent vector are used to initialize the filter, by setting V0|0 =

−
(
KP

1

)−1
KP

0 , and vec
(
P0|0

)
= ∆t (I9 − Φ1 ⊗ Φ1)−1 vec

(
Σ
(
V0|0

))
, where I9 is a 9 × 9 identity

matrix, and ⊗ is the Kronecker product. Now, consider that Vt|t and Pt|t are available at a generic

iteration t. Then, the filter proceeds recursively through the forecasting step:



Vt+1|t = Φ0 + Φ1Vt|t

Pt+1|t = Φ1Pt|tΦ
>
1 + ∆tΣ

(
Vt|t
)

CUMQ
t+1|t = Γ0 + Γ1Vt+1|t

Mt+1|t = Γ1Pt+1|tΓ
>
1 + Ωcum,

(19)

and the updating step:

 Vt+1|t+1 =
[
Vt+1|t + Pt+1|tΓ

>
1 M

−1
t+1|t

(
CUMQ

t+1 − CUM
Q
t+1|t

)]
+
,

Pt+1|t+1 = Pt+1|t − Pt+1|tΓ
>
1 M

−1
t+1|tΓ1Pt+1|t,

(20)

where [V ]+ returns a vector whose ith element is max (Vi, 0). This additional condition ensures that

latent factor estimates remain positive for all iterations — a crucial property for stochastic volatility

factors that cannot assume negative values. Finally, we construct a Gaussian quasi log-likelihood

for the cumulants:

LikCUM = −1

2

T∑
t=1

[
ln
(

(2π)2J det
(
Mt|t−1

))
+ ξ>t,cumM

−1
t|t−1ξt,cum

]
, (21)

where ξt,cum ≡ CUMQ
t − CUM

Q
t|t−1.
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4.2 Risk-neutral Expected Quadratic Loss and Gain Likelihood

We use equation (5) to compute model implied µQ+
2 (t, τ) and µQ−2 (t, τ) . Note that EQ

t

[
r2
t,t+τ

]
=

CUM
(2)Q
t,τ +

(
CUM

(1)Q
t,τ

)2
and both CUM

(2)Q
t,τ and CUM

(1)Q
t,τ are computed analytically within the

AFT framework following Feunou and Okou (2018). We follow Fang and Oosterlee (2008) and

compute ΛQ (t, τ) as:

ΛQ (t, τ) =
2

π

∫ +∞

0

Im
(
ϕ

(2)
t,τ (−iv)

)
v

dv ≡ µQ−2 (t, τ)− µQ+
2 (t, τ)

= EQ
t

[
r2
t,t+τ {I (rt,t+τ < 0)− I (rt,t+τ > 0)}

]
=

N−1∑
k=0

Re

{
ϕt,τ

(
i
kπ

b− a

)
exp

(
−i kπa
b− a

)}
ωk,

where i stands for the imaginary unit, I the indicator function,

ω0 ≡
1

b− a

∫ b

a
y2 {I (y < 0)− I (y > 0)} dy =

 − b3−a3
3(b−a) if a ≥ 0

− b3+a3

3(b−a) if a < 0
,

and for k > 0

ωk ≡ 2

b− a

∫ b

a
y2 {I (y < 0)− I (y > 0)} cos

(
kπ
y − a
b− a

)
dy

=

 −
4(b−a)(b(−1)k−a)

(kπ)2
if a ≥ 0

−4(b−a)(b(−1)k+a)
(kπ)2

+ 8(b−a)2

(kπ)3
sin
(
kπ a

b−a

)
if a < 0

.

In the implementation phase, we set a = ln(0.01), b = −a, and N = 100. Recall that within the AFT

framework, the risk-neutral moment generation function ϕt,τ (·) is an exponential linear function of

the factor Vt.
7 Hence, both µQ+

2 (t, τ) and µQ−2 (t, τ) are non-linear functions of the factor Vt:

µQ+
2 (t, τ) = µQ+

2,τ (Vt) , µQ−2 (t, τ) = µQ−2,τ (Vt)

Tmom+
t =

(
µQ+

2,τ1
, · · · , µQ+

2,τJ

)>
, Tmom−t =

(
µQ−2,τ1

, · · · , µQ−2,τJ

)>
Tmomt =

(
Tmom+>

t , Tmom−>t

)>
.

7The coefficients relating ln (ϕt,τ (·)) are a solution to Ordinary Differential Equations (ODEs) that can only be
solved numerically (see the Internet Appendix of Andersen et al., 2015 for more details). We thank Nicola Fusari for
sharing the estimation code.

21



We construct a Gaussian quasi log-likelihood for the truncated moments Tmomt

LikTmom = −1

2

T∑
t=1

[
ln
(

(2π)2J det (ΩTmom)
)

+ ξ>t,TmomΩ−1
Tmomξt,Tmom

]
, (22)

where ξt,Tmom = Tmom
(Obs)
t − Tmomt

(
Vt|t
)
, ΩTmom denotes the measurement error variance,

Tmom
(Obs)
t is the time t observed risk-neutral truncated moments (computed model-free using

(10)), and Vt|t is obtained through the filtering procedure (see Equation (19) and (20)). Different

models’ parameters are estimated via a maximisation of LikCUM + LikTmom.

4.3 Discussions

The Kalman filter is not optimal in this case, given the heteroscedasticity and non-Normality of fac-

tors and some nonlinear measurement equations. With respect to the problematic of heteroscedastic

and non-Gaussian factors, we refer readers to Monfort et al. (2017) and Duan and Simonato (1999)

for extensive discussions and Monte Carlo analyses suggesting that the lost of optimality is very

minimal. Regarding nonlinear measurement equations, two other alternatives could have been con-

sidered: (1) locally linearize the nonlinear measurement equation: this is known as the Extended

Kalman filter, or (2) use a deterministic sampling technique (known as the unscented transforma-

tion) to accurately estimate the true mean and covariance: this is known as the Unscented Kalman

filter.

While in theory the Extended Kalman filter is appealing, as it allows the nonlinear measure-

ment equation to impact directly the filtered factors, its implementation is very complex in our

case. Mainly because of the nonlinear measurements themselves are approximate (we rely on

approximation techniques developed in Fang and Oosterlee (2008)). In addition, this technique

requires to explicitly calculate Jacobians, which for complex functions can be a difficult task in

itself (i.e., requiring complicated derivatives if done analytically or being computationally costly if

done numerically), if not impossible (if those functions are not differentiable).

Face with this uncertainty about the nature of the non-linearity, thus with an almost certain

lack of robustness, we have traded the potential gain of optimality with a more robust and reliable

approach. Let us emphasize that, nonlinear equations are used for parameters estimations, which

implies that they impact the filter albeit indirectly. Finally, the computational hurdle is the major

obstacle preventing us from contemplating the Unscented Kalman filter.
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5 Results

In this section, we evaluate the ability of different models to fit the term structure of the expected

quadratic payoff and its loss and gain components. We use Christoffersen et al. (2009) (AFT0) as

our baseline model. We compare this baseline model with two other two-factor alternatives AFT1

and AFT2 and two more three-factor models AFT3 with symmetric jump distribution and AFT4

in Andersen et al. (2015). Finally, we evaluate the ability of different pricing kernels with various

flexibility in fitting the QRP and its loss and gain components.

5.1 Fitting the Risk-neutral Expectations

We examine the performance of different models by relying on the root-mean-squared error:

RMSE ≡

√√√√ 1

T

T∑
t=1

(
MomMkt

t −MomMod
t

)2
,

where MomMkt
t is the time t observed risk-neutral moment and MomMod

t is the model-implied

equivalent. Results are reported in Table 3 where several conclusions can be drawn8. Overall,

regarding the fitting of the term structure of the risk-neutral expected gain and loss, the benchmark

two-factors diffusion model (AFT0) is outperformed by all the other variants.

With respect to the risk neutral quadratic loss fit, the AFT0 model’s RMSE increases with

horizon and ranges from 1% at two months to 2.15% at one year. The average RMSE is 1.73%

which is far higher than other models’ RMSEs. The best performer is the AFT4 model with an

average error of 0.77% which offers approximately 56% improvement over the benchmark AFT0

model. This performance of the AFT4 model is robust across horizon, with a RMSE as low as

0.45% around horizons 4 to 5 months, which is an improvement of nearly 75% over the benchmark

AFT0 model. The three-factor models (AFT3 and AFT4) outperform the other two-factor models

(AFT1 and AFT2). The AFT4 model offers an improvement of approximately 15% over the AFT3

model, which underscores the importance of accounting for asymmetry in the jump distribution.

Turning to the risk-neutral quadratic gain fit, the AFT0 model’s average RMSE is 2.19%, which

is roughly 50% higher than other variants RMSEs. The best performing model on this front is the

AFT1 model with an average RMSE of 0.98%, while the performances of the AFT2, AFT3 and

AFT4 models are similar. However, the AFT0 model fits the term structure of the total risk-neutral

8To save space, we report risk-neutral parameter estimates in the Internet Appendix
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quadratic payoff remarkably well with an average RMSE of 0.44%, which confirms the findings of

Christoffersen et al. (2009). The best performer for the term structure of the total quadratic payoff

is again the AFT4 model with a RMSE of about 0.19%, which offers an improvement of about 57%

over the benchmarks AFT0 and AFT3. In accordance with our findings regarding the quadratic

loss, this result highlights the importance of asymmetry in the jump distribution for fitting the

term structure of risk-neutral variance.

On the term structure of risk-neutral skewness dimension, the benchmark AFT0 is the worst

performer with an average RMSE of 0.85, whereas all the other variants have similar fit, with

an average RMSE of approximately 0.15, which is almost 80% improvement over the benchmark

the benchmark AFT0. This results underscores the importance of jumps when fitting the term

structure of risk-neutral skewness. To better understand our findings, we plot in Figure 3 (the first

two rows) the observed and models implied average term structure of risk-neutral moments. The

AFT0 model is clearly unable to fit the average term structure of risk-neutral expected quadratic

gain or loss. It overestimates the risk-neutral expected quadratic gain and underestimates the risk-

neutral expected quadratic loss, which explains why it is able to fit the term structure of the total

risk-neutral expected quadratic payoff well. Not surprisingly, the AFT0 model is outperformed by

all the other variants when it comes to fitting the term structure of skewness. The most likely

explanation is that jumps are essential to generate skewness, only accounting for the leverage effect

is not enough.

The ranking between two-factor models (AFT1 and AFT2) is mixed. The model without pure

jump process (AFT1) dominates the one without pure diffusion process (AFT2) when fitting the

term structure of the risk-neutral expected quadratic loss and gain in the short end. However,

this result is reversed in the long end. Figure 3 shows that, on average, the AFT1 model fits

the term structure of the risk-neutral expected quadratic gain remarkably well, while the AFT2

model fits the term structure of risk-neutral expected quadratic loss very well. These results

suggest that incorporating a pure jump process and having jumps in the volatility are essential for

the distribution of the loss uncertainty, while a pure diffusion process is a key ingredient for the

distribution of the gain uncertainty.

Both of the two-factor variants are outperformed by the most general specification (AFT4) which

overall is able to reproduce the term structure of the truncated and total risk-neutral moments

remarkably well. Comparing the two three-factors models (AFT3 and AFT4), we evaluate the
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importance of introducing a wedge between the negative and positive jump distribution. The

results are mixed on this front. For the term structure of the risk-neutral expected quadratic loss

and the risk-neutral expected quadratic payoff, the AFT4 model clearly outperforms the AFT3

model (which has no asymmetry in the jump distribution). However, there is no clear winner for

the gain uncertainty and skewness. The AFT4 model fits better the short-end of the risk-neutral

expected quadratic gain, while the AFT3 is preferred on the long-end.

5.2 Fitting the QRPs

We focus on the most flexible specification of the AFT model (AFT4) and evaluate the fitting

ability of different pricing kernel specifications discussed in section 3.2. The last row of Figure

3 plots the observed and models’ implied average term structure of the quadratic risk premium.

It is readily apparent that the most flexible Radon-Nikodym derivative (RND4) is the only one

which is able to fit adequately the average term structure of the quadratic risk premium and its loss

and gain components. The worst performer is RND0 which assumes that jumps are not priced.

Not pricing jumps generates a negative average term structure of the net and loss quadratic risk

premium. Not pricing either positive jumps (RND2) or negative jumps (RND3) is also strongly

rejected. Finally, even though a symmetric Radon-Nikodym derivative (RND1) which gives the

same price to both the positive and negative jumps, is able to replicate the positive sign for all

the three term structures, it fells short to capture the right level. Overall, it is imperative to price

jumps asymmetrically in the pricing kernel.

To confirm these visual findings, we report the root mean squared error in Table 4. In addition

to the Loss and Gain QRP RMSEs reported in the top panels, we have also reported the total

QRP (denote Net QRP in table, because it is the difference between Loss and Gain QRP) in the

bottom left panel and the skewness risk-premium (which is defined as the sum of the Loss and

Gain QRP) in the bottom right panel. The numbers are roughly in line with the Figure 3’s visual

findings. Except for the very short maturity (3 month), RND4 yields the smallest RMSE across

maturities and for different types of risk premium. RND0 is the worst performer, which implies

that pricing jumps is important for the dynamic of the quadratic risk premium and its components.

The average RMSE for the RND4 model is 3.5%, 1.2%, 1.4% and 3.2% for the Loss, gain, net and

the sum QRP respectively. These numbers are substantial improvements over the benchmarks

RND0 (which assumes that jumps are not priced) and RND1 (which gives the same price to

both the positive and negative jumps). To be more specific, on one hand the RND4 model offers
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approximately 70%, 30%, 80% and 72% improvements over RND0 for the fitting of the Loss, gain,

net and the sum QRP respectively. On the other hand, the RND4 model offers approximately

62%, 33%, 75% and 66% improvement over RND1 for the fitting of the Loss, gain, net and the

sum QRP respectively.

We can further scrutinize the overall performance results by maturity. Table 4 reveals that the

superiority of the RND4 pricing kernel holds across the maturity spectrum. For the Loss, net and

sum QRP, the relative improvement increases with the maturity, and reaches 80% at the one year

horizon.

6 Conclusion

In this paper we investigate how the amount of money paid by investors to hedge negative spikes in

the stock market changes with the investment horizon. For this purpose, we estimate the quadratic

payoff and its loss and gain components across time and horizon. We uncover new empirical facts

which challenge most of the existing option and variance swaps pricing models. Among these facts,

we find an average upward sloping term structure for the risk-neutral expected quadratic payoff and

its components. We also find upward sloping term structures for the physical expected quadratic

payoff and quadratic gain but a downward sloping term structure for the physical expected quadratic

loss. There is significant time variation in the slopes of these term structures, and we observe that

they are negative and spike during financial downturns. Finally, we find that at least three principal

components are required to explain the cross-section (across maturity or horizon) of the risk-neutral

and physical expected quadratic payoff and its components.

To replicate these empirical facts we focus on the Andersen et al. (2015) model and some of its

restricted variants. This model is particularly appealing as it completely disentangles the dynamics

of negative and positive jumps. In addition, the model has three factors which is an essential

ingredient as suggested by our principal component analysis. We find that models without an

asymmetric treatment of positive and negative jumps are overall rejected as they are unable to fit

the term structure of the risk-neutral expected quadratic loss. Notably, this category of models

covers most of the existing option and variance swap pricing models found in the literature. We

also evaluate different pricing kernel specifications and find that disentangling the price of negative

jumps from its positive counterpart is essential for replicating the observed term structures of loss

and gain quadratic risk premium.
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Table 1: Descriptive Statistics

In this table, we report the time-series mean for all maturities ranging from 1 to 12 months for a set of variables that includes:

the risk-neutral expected quadratic payoff (EQ [r2], EQ [l2], EQ [g2]), the expected quadratic payoff (E
[
r2
]
, E
[
l2
]
, E
[
g2
]
), and

the quadratic risk premium (QRP , QRP l, QRP g). Below each mean, in parentheses we also report the Newey and West (1987)

standard error. All statistics are monthly squared percentage values. The sample period is from January 1996 to December

2015.

Mean

Maturity 1 2 3 4 5 6 7 8 9 10 11 12

E
[
r2
]

26.28 26.49 27.42 28.20 27.97 27.88 27.97 28.06 28.06 28.16 28.38 28.64

(2.49) (2.07) (2.07) (2.01) (1.66) (1.45) (1.34) (1.25) (1.16) (1.09) (1.04) (1.00)

E
[
l2
]

10.87 10.05 10.05 9.95 9.09 8.35 7.90 7.43 6.95 6.56 6.32 6.14

(1.58) (1.30) (1.54) (1.54) (1.13) (0.83) (0.73) (0.66) (0.55) (0.47) (0.44) (0.42)

E
[
g2
]

15.41 16.45 17.37 18.25 18.88 19.53 20.07 20.63 21.11 21.59 22.06 22.50

(1.07) (0.95) (0.87) (0.88) (0.89) (0.91) (0.89) (0.86) (0.84) (0.82) (0.80) (0.78)

EQ [
r2
]

45.30 45.55 46.47 47.07 47.39 47.86 48.40 48.81 49.14 49.33 49.40 49.94

(3.53) (3.03) (2.92) (2.66) (2.43) (2.38) (2.34) (2.32) (2.29) (2.26) (2.19) (2.18)

EQ [
l2
]

30.46 31.16 32.01 32.50 32.71 33.03 33.39 33.65 33.81 33.83 33.74 34.09

(2.58) (2.26) (2.24) (2.04) (1.85) (1.84) (1.84) (1.84) (1.85) (1.83) (1.77) (1.78)

EQ [
g2
]

14.84 14.39 14.46 14.57 14.68 14.84 15.01 15.16 15.33 15.50 15.66 15.85

(0.98) (0.80) (0.73) (0.68) (0.64) (0.61) (0.59) (0.58) (0.57) (0.56) (0.56) (0.55)

QRP 19.04 19.07 19.07 18.89 19.43 20.01 20.44 20.77 21.10 21.19 21.04 21.32

(1.35) (1.43) (1.43) (1.36) (1.41) (1.44) (1.41) (1.43) (1.46) (1.45) (1.43) (1.44)

QRP l 19.61 21.13 21.98 22.57 23.64 24.70 25.50 26.23 26.89 27.29 27.43 27.97

(1.42) (1.54) (1.63) (1.65) (1.69) (1.71) (1.69) (1.71) (1.74) (1.73) (1.69) (1.70)

QRP g 0.56 2.05 2.91 3.68 4.20 4.69 5.06 5.46 5.78 6.10 6.40 6.65

(0.33) (0.37) (0.40) (0.46) (0.44) (0.46) (0.47) (0.47) (0.47) (0.47) (0.47) (0.48)

Table 2: Principal Component Analysis

In this table, we report in percentage the explanatory power of each of the first three principal components, and their total

explanatory power, for a number of different information sets. These include the term structure of the loss and gain components

of the physical expected quadratic payoff, the risk-neutral expected quadratic payoff, and the quadratic risk premium, each

separately. We also report the explanatory power of the first three principal components of the term structure of components

of the physical expected quadratic payoff together with the term structure of the components of the quadratic risk premium.

The sample period is from January 1996 to December 2015.

Principal Component 1 2 3 First 3

Information Sets Explanatory Power

E
[
l2
]

and E
[
g2
]

58.01 37.10 3.13 98.24

EQ [
l2
]

and EQ [
g2
]

87.33 8.78 2.76 98.87

QRP l and QRP g 73.05 15.22 6.18 94.45

E
[
l2
]
, E

[
g2
]
, QRP l and QRP g 56.73 26.73 7.93 91.39
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Table 3: Risk-Neutral Moments RMSEs

In this table we report the root mean squared error

RMSE ≡

√√√√ 1

T

T∑
t=1

(
MomMkt

t −MomMod
t

)2
,

where MomMkt
t is the time t risk-neutral moment value observed on the market, MomMod

t is the corresponding model-implied

equivalent. All variance RMSEs are in annual percentage units. The sample period is from January 1996 to December 2015.

τ Quadratic Loss Quadratic Gain

AFT0 AFT1 AFT2 AFT3 AFT4 AFT0 AFT1 AFT2 AFT3 AFT4

2 1.08 0.97 1.14 0.77 0.68 2.56 0.69 1.50 1.65 0.82

3 1.47 0.60 0.81 0.62 0.50 2.12 0.72 1.13 1.37 0.63

4 1.73 0.40 0.57 0.52 0.44 1.99 0.78 0.95 1.14 0.69

5 1.82 0.45 0.46 0.49 0.46 1.93 0.85 0.91 1.08 0.80

6 1.77 0.66 0.55 0.64 0.54 1.98 0.92 0.98 1.06 1.00

7 1.74 0.88 0.74 0.80 0.66 2.07 0.99 1.03 1.07 1.19

8 1.71 1.06 0.89 0.97 0.83 2.15 1.06 1.07 1.08 1.37

9 1.70 1.23 1.05 1.12 0.95 2.21 1.12 1.10 1.03 1.51

10 1.86 1.36 1.20 1.23 1.03 2.28 1.19 1.13 1.00 1.63

11 1.99 1.49 1.29 1.32 1.11 2.38 1.21 1.12 1.00 1.72

12 2.15 1.60 1.39 1.36 1.22 2.45 1.29 1.06 1.07 1.80

Avg 1.73 0.97 0.92 0.89 0.77 2.19 0.98 1.09 1.14 1.20

τ Volatility Skewness

AFT0 AFT1 AFT2 AFT3 AFT4 AFT0 AFT1 AFT2 AFT3 AFT4

2 0.74 1.09 1.04 0.69 0.31 0.97 0.19 0.26 0.30 0.47

3 0.33 0.70 0.70 0.61 0.11 0.95 0.16 0.19 0.22 0.27

4 0.51 0.44 0.43 0.47 0.18 0.97 0.15 0.15 0.17 0.19

5 0.47 0.29 0.24 0.31 0.21 0.92 0.13 0.12 0.13 0.13

6 0.43 0.21 0.19 0.19 0.21 0.88 0.11 0.09 0.09 0.09

7 0.36 0.29 0.26 0.23 0.18 0.85 0.08 0.09 0.08 0.09

8 0.22 0.40 0.39 0.33 0.15 0.81 0.08 0.11 0.09 0.11

9 0.20 0.55 0.52 0.44 0.12 0.79 0.09 0.13 0.09 0.15

10 0.36 0.67 0.64 0.50 0.16 0.75 0.11 0.17 0.10 0.17

11 0.54 0.81 0.78 0.61 0.20 0.72 0.13 0.19 0.12 0.19

12 0.71 0.93 0.93 0.75 0.28 0.74 0.14 0.19 0.15 0.22

Avg 0.44 0.58 0.56 0.47 0.19 0.85 0.12 0.15 0.14 0.19
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Table 4: Quadratic Risk Premium RMSEs

In this table we report the root mean squared error

RMSE ≡

√√√√ 1

T

T∑
t=1

(
QRPMkt

t −QRPMod
t

)2
,

where QRPMkt
t is the time t Quadratic Risk Premium value observed on the market, QRPMod

t is the corresponding model-

implied equivalent. All variance RMSEs are in annual percentage units. The sample period is from January 1996 to December

2015.

τ Loss QRP Gain QRP

RND0 RND1 RND2 RND3 RND4 RND0 RND1 RND2 RND3 RND4

3 9.86 6.39 3.92 3.55 6.36 1.72 1.95 2.79 2.80 1.12

6 11.53 9.21 4.08 6.04 2.73 1.53 1.62 0.93 1.41 0.92

9 12.53 10.82 3.85 8.01 2.73 1.69 1.70 1.18 1.43 1.23

12 13.21 11.63 4.09 9.16 2.55 1.95 1.93 1.62 1.73 1.52

Avg 11.78 9.51 3.99 6.69 3.59 1.72 1.80 1.63 1.84 1.20

τ Net QRP (i.e Loss QRP - Gain QRP) Skewness RP (Loss QRP+Gain QRP)

RND0 RND1 RND2 RND3 RND4 RND0 RND1 RND2 RND3 RND4

3 7.33 4.86 2.63 3.28 2.77 10.90 7.31 4.08 4.85 6.60

6 7.85 6.15 2.16 3.90 1.17 11.98 9.84 3.71 6.59 2.27

9 7.42 6.11 1.70 4.12 0.94 11.88 10.25 3.01 7.52 2.13

12 7.05 5.88 1.32 4.12 0.91 11.80 10.40 2.72 8.06 1.92

Avg 7.41 5.75 1.95 3.86 1.45 11.64 9.45 3.38 6.76 3.23

31



Figure 1: Term Structure of Expected Quadratic Payoff

In this figure, in Panel A we plot the mean S&P 500 risk-neutral expected quadratic payoff and its loss and gain components

for maturities of 1, 3, 6, 9 and 12 months. In Panel B, we plot the same quantities for the physical excepted quadratic payoff

also for maturities of 1, 3, 6, 9 and 12 months. The sample period is from January 1996 to December 2015.
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Figure 2: Level and Slope of Expected Quadratic Payoff Term Structure

In this figure, in Panel A we plot the level (6-month maturity) of the S&P 500 risk-neutral (Q) expected quadratic payoff and its

loss and gain components. In Panel B, we plot the slope (12-month minus the 2-month maturity) of the S&P 500 risk-neutral

expected quadratic payoff and its loss and gain components. In Panel C and D, we plot the same quantities for the physical (P)

excepted quadratic payoff also for the level and slope, respectively. The sample period is from January 1996 to December 2015.
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Figure 3: Observed and models implied average term structure of risk-neutral moments and risk-premium

In this figure we plot the observed and models implied average term structure of risk-neutral moments (the first two rows) and

quadratic risk premium (the third row). For the risk premium, we use the most flexible specification of the AFT model (AFT4).

The sample period is from January 1996 to December 2015.
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