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1 Introduction

Economists would agree that the loss and the gain are the main attributes of an investment return.

Bernardo and Ledoit (2000) define the loss l and the gain g as magnitudes of the nonpositive and

the nonnegative parts of the return r, respectively, that is, l = max (−r, 0) and g = max (r, 0).

The ex ante perceptions of the potential loss and gain not only determine the attractiveness of an

investment opportunity but they are also relevant for its relative valuation. The loss uncertainty

characterizes the risk of the actual return being negative, or the uncertainty about the amplitude

of the loss. Similarly, the gain uncertainty characterizes the potential of the actual return being

positive, or the uncertainty about the size of the gain.

In this paper, we first provide measures of the premia associated with fluctuations in the loss

uncertainty and the gain uncertainty, called the loss quadratic risk premium (QRP) and the gain

QRP, respectively. Our empirical measurement and estimation of the loss and gain QRPs are

consistent with a premium definition as the difference between the risk-neutral and physical ex-

pectations of the same quantity. More precisely, we define the loss QRP as the risk-neutral minus

physical expectation of quadratic loss, i.e., QRPl ≡ EQ [l2]−E
[
l2
]
, so that the loss QRP is positive

for investors who are typically averse to fluctuating loss uncertainty. Risk averse investors thus pay

the loss QRP to hedge extreme losses in bad times. To the contrary, we define the gain QRP as the

physical minus risk-neutral expectation of quadratic gain, i.e., QRPg ≡ E
[
g2
]
− EQ [g2

]
, so that

the gain QRP is positive for investors who are typically averse to fluctuating gain uncertainty. Risk

averse investors thus receive the gain QRP to compensate for weak upside potential in bad times.

Next, we argue that an asset’s premium must reflect its loss QRP and gain QRP. Our reasoning

is as follows. An asset with larger loss QRP is unattractive because a higher loss QRP reflects

more severe downside risk in bad times. Likewise, an asset with larger gain QRP is unattractive

because a higher gain QRP means weaker gain potential in bad times. Since investors are sensitive

to fluctuations in loss (gain) uncertainty, they would require a higher premium for holding assets

with higher loss (gain) QRP. Those assets will in turn pay higher returns on average.

We empirically explore our cross-sectional predictions using stock and option data for the U.S.

from January 1996 to December 2015. To measure risk-neutral expectations, we exploit results

from Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003) to prove that the risk-
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neutral expected quadratic loss (gain) can be recovered from the market prices of out-of-the-money

European put (call) options. Option data are used to implement these formulas. A conditional

log normality of returns is assumed to derive analytical formulas for the physical expectations

of quadratic gain and quadratic loss. A variant of the heterogenous autoregressive model of the

realized volatility (HAR-RV) of Corsi (2009) is used to estimate the conditional variance and the

same information set is used to estimate the conditional mean of log returns. Stock data are used

to implement physical expectations formulas. Our measures for the loss and gain QRPs are the

appropriate difference between the corresponding risk-neutral and physical expectations.

In our main cross-sectional tests, we use portfolio sorts based on each firm’s QRP components

(i.e., the loss and gain QRPs), controlling for exposures to frequently investigated market fac-

tors and other firm characteristics. Across firms, we find a wide dispersion in QRP components

which generates cross-sectional variations in asset premia. We find strong evidence that the QRP

components are positively related to expected excess returns in the cross-section. Specifically, si-

multaneously going long a portfolio of firms with high loss QRP and short a portfolio of firms with

low loss QRP yields a monthly expected excess return of 2.79%, risk-adjusted using the five-factor

model of Fama and French (2015). Likewise, we also find that the gain QRP has a strong posi-

tive and significant relation with monthly expected stock returns. The long-short portfolio has a

five-factor alpha of 2.78% per month.1 Since the two QRP components have similar effects in the

cross-section, and QRP is by definition the difference between its two components (we also refer

to QRP as the net QRP), this potentially explains why we find no evidence of a relation between

(the net) QRP and monthly expected stock returns. Thus, decomposing the QRP into its loss and

gain components is clearly very informative.

We run Fama and MacBeth (1973) cross-sectional regressions with individual stocks as test

assets to estimate risk prices associated with the QRP components. Cross-sectional regression

results confirm that the QRP components provide significant explanatory power for the variation of

monthly expected stock returns beyond traditional asset pricing risk factors and firm characteristics.

Our estimates suggest that, everything else being equal, the QRP components are economically

1At the first glance these spreads may seem high. However, once we control for trading costs and microstructure
effects that are not tradeable, these spreads decrease and are of similar size to previous literature on other anomalies
such as the asset growth anomaly (Cooper, Gulen, and Schill, 2008), or the idiosyncratic volatility puzzle (Ang,
Hodrick, Xing, and Zhang, 2006).
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important that a one standard deviation increase is associated with a rise in monthly expected

excess returns between 1.7% and 2.4% in the cross-section.

Our paper mostly contributes to the literature on the cross-sectional implications of downside

risk (e.g., Ang, Chen, and Xing, 2006; Lettau, Maggiori, and Weber, 2014; Farago and Tédongap,

2018). Our measure for downside risk, the loss QRP corresponds to the specific cost to insure

against undesirable fluctuations in a firm’s loss uncertainty. Since we use the quadratic payoff rather

than the payoff itself, the loss QRP partly represents a firm’s return squared exposure or squared

beta relative to market-wide factors, but also partly represents firm characteristics related to the

idiosyncratic variance or the jump variation of the returns. Empirical tests and evidence in Daniel

and Titman (1997, 2012) support our approach of measuring the downside risk through a firm’s

specific characteristic rather than its factor exposure. Thus, our paper is related to Xing, Zhang,

and Zhao (2010) and Yan (2011) who show that the firm-level implied volatility smirk (an option-

based measure of downside risk) has a strong predictive power for expected stock returns. It also

relates to Bollerslev, Li, and Zhao (forthcoming) who find that the signed jump variation (defined

as the standardized difference between the gain and loss realized variances) is significantly related

to expected stock returns, and Huang and Li (2019) who investigate the risk-neutral counterpart

of the signed jump variation. In our empirical analyses, we control for the implied volatility smirk

and the signed jump variation, as well as multivariate exposures to the generalized disappointment

aversion (GDA) factors of Farago and Tédongap (2018), and find that the loss and gain QRPs

still have significant positive relationships with expected stock returns in our sample. Besides that,

our result regarding the gain QRP shows that the upside risk is significantly and robustly priced

even after controlled for the downside risk. Since there is little evidence in the literature about the

pricing of the upside risk, our findings on the gain QRP constitute an important new contribution.

A popular measure of the premium for bearing fluctuating uncertainty is the variance risk

premium (VRP). In previous literature, VRP has been examined for the aggregate stock market’s

time series predictability (e.g., Bollerslev, Tauchen, and Zhou, 2009, Bollerslev, Marrone, Xu,

and Zhou, 2014, Feunou, Jahan-Parvar, and Okou, 2018 and Kilic and Shaliastovich, 2019) as

well as for the cross-sectional predictability (e.g., Han and Zhou, 2011). However, there is a

lack of coherency in the literature as to how to accurately estimate and measure VRP and its
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loss and gain components. While the physical expectation of realized variance is consistently

estimated using an appropriate time series forecasting model, its risk-neutral expectation is, in

general, estimated via a Bakshi, Kapadia, and Madan (2003)-like formula which corresponds to the

risk-neutral expectation of quadratic payoff. As a result, the estimated VRP in previous studies

does not conform with a premium definition. This measure is biased unless the quadratic payoff

and the realized variance are equal. We illustrate the significance of this bias by using the S&P

500 daily and intra-daily return data. Furthermore, we show that the loss and gain components

of the quadratic payoff are significantly different from their counterparts for the realized variance

(the so-called semi-variances). Other types of bias related to the measurement of risk-neutral

second moments of returns and in connection with the options-implied volatility index (VIX) are

discussed by Andersen, Bondarenko, and Gonzalez-Perez (2015) and Martin (2017). In this paper,

by focusing on QRP and its components, we can maintain the premium definition and be free from

this significant bias between the realized variance and the quadratic payoff.

Our results also appear useful for understanding important asset pricing anomalies put forward

in the recent literature. Stambaugh, Yu, and Yuan (2015) find that idiosyncratic volatility is nega-

tively priced among overpriced stocks, and this cross-sectional predictability is the highest among

overpriced stocks that are also difficult to short. Similarly, we find that idiosyncratic volatility is

significantly negatively priced only among stocks with low loss QRP, and within this group, its

cross-sectional predictability is the highest among stocks with low gain QRP. Stocks with low loss

QRP are preferred by the investors because they have small downside risk in bad times. Thus

investors’ extra demand leads to the relative overpricing of these stocks. Further, among stocks

with low loss QRP, those with low gain QRP have large upside potentials in bad times, thus are

more desirable and shorting them may be risky and very costly. Taken together, these results

corroborate and extend, using our downside and upside risk measures, the arbitrage asymmetry

and arbitrage risk explanations of the idiosyncratic volatility puzzle in Stambaugh, Yu, and Yuan

(2015) for a large sample of optionable stocks.

Our results finally evidence that cross-sectional predictability of the loss and gain QRPs is not

uniform across all categories of stocks, i.e., it is significantly stronger for certain types of stocks

relative to others. This suggests that a particular characteristic may be essential for understanding
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why certain stocks are more predictable by the QRP components in the cross-section relative to

others. In particular, we find that the cross-sectional predictability of the loss and gain QRPs is

the strongest among firms for which illiquidity may prevent rational arbitrageurs from exploiting

existing arbitrage opportunities. Likewise, we find that as the diffusion of firm-specific information

increases, as proxied by the number of analysts covering the stock, the predictability of both the

loss and gain QRPs decreases. These results suggest that the predictability of the loss and gain

QRPs is in part driven by limits to arbitrage and information asymmetry. We also find evidence

that the cross-sectional predictability of the gain QRP is in part driven by the demand for lottery,

as proxied by the MAX measure of Bali, Cakici, and Whitelaw (2011).

The rest of the paper is organized as follows. Section 2 introduces and motivates QRP and

discusses its relation with VRP. Section 3 discusses the methodology used to estimate individual

firm QRP components. Section 4 discusses the data and presents descriptive statistics of the key

measures. In Section 5, we investigate the cross-sectional relationship between QRP components

and expected stock returns. Section 6 discusses possible ways for explaining and understanding

our findings. Section 7 concludes. An Internet Appendix available on the authors’ webpages

contains details on analytical proofs, data sources and the measurement of factor exposures and

firm characteristics, as well as results and illustrations that are omitted for brevity.

2 Theory and Motivation

In this section we formally define QRP and its gain and loss components, which we then compare to

VRP and its components. In the case of a monthly horizon, the quadratic payoff is the squared log

return over a month, while the realized variance is the sum of squared daily (or higher frequency)

log returns within a month. Although both are valid nonparametric measures of stock return

uncertainty, the quadratic payoff may be very different from the realized variance and we formally

illustrate their difference. This difference is more pronounced between the loss and gain components

of the quadratic payoff (called quadratic loss and gain, respectively) and their counterparts for

the realized variance (called semi-variances). Consequently, the realized semi-variances cannot be

substituted by the quadratic loss and quadratic gain when measuring the VRP components.
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2.1 Quadratic Risk Premium: Decomposition and Interpretation

We introduce QRP, the difference between the risk-neutral and physical expectations of quadratic

payoff (squared log return). Formally, denote rt−1,t the monthly realized (log) return from end of

month t−1 to end of month t. The quadratic payoff is simply r2
t−1,t, and is a measure of fluctuating

uncertainty over the monthly period. Risk-averse investors dislike fluctuating uncertainty because

large fluctuations may lead to high uncertainty levels, which in turn may result in losses.

The QRP can be interpreted as the net outflow of a risk-averse investor in a quadratic swap

market. In theory, an investor who dislikes fluctuating uncertainty would be willing to swap it for

a fixed amount. We can define the quadratic strike as the fixed amount an investor would request

against fluctuating quadratic payoff. To the best of our knowledge, quadratic swap markets do not

exist. Thus being able to compute the quadratic strike of an asset from available data provides

an assessment of the insurance cost for hedging its fluctuating uncertainty. On the other hand,

since measuring uncertainty through the realized variance is common in the literature, we can also

consider a variance swap market. In this market, risk-averse investors can swap the variance for a

fixed amount, called the variance strike, which is directly observable for a minority of stocks that

have functioning variance swap markets. For the majority of stocks, however, the variance strike

has to be estimated. We choose to use the quadratic payoff to measure uncertainty and QRP as

the net insurance cost because the estimation of the quadratic strike is feasible using option data,

while the variance strike is not (see Section 3.1 for details).

The QRP is positive on average because investors are typically risk-averse and dislike fluctuating

uncertainty. Risk-averse investors swapping the strike against the fluctuating uncertainty will be

better off if the uncertainty level turns out to be largely above the strike paid. For the privilege of

savoring this outcome in hard times when the marginal utility is high, investors would be willing

to pay an insurance cost. The strike minus the (physical) expected uncertainty level would be

positive, thus representing the positive QRP. Since a swap has zero net market value at inception,

the no-arbitrage condition dictates that the strike is equal to the risk-neutral expected uncertainty
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level. We formally define QRP as follows:

QRPt ≡ EQ
t

[
r2
t,t+1

]
− Et

[
r2
t,t+1

]
= Covt

(
Mt,t+1, r

2
t,t+1

)
,

(1)

where Et [·] denotes the time-t physical conditional expectation operator, EQ
t [·] denotes the time-

t conditional expectation operator under some risk-neutral measure Q, Mt,t+1 is the state price

density used to price assets between time t and time t + 1, and Covt (·, ·) is the time-t physical

conditional covariance operator.

Equation (1) shows that the QRP is fully characterized by the systematic risk of the quadratic

payoff. Notice however that the QRP is not free from the idiosyncratic volatility as usually under-

stood. Indeed, the firm returns can be written as rt,t+1 = βt (Mt,t+1) + εt+1 where βt (Mt,t+1) =

Et [rt,t+1 |Mt,t+1] is the systematic component of the returns, and εt+1 is the idiosyncratic compo-

nent of the returns with Et [εt+1 |Mt,t+1] = 0. Let ϑt (Mt,t+1) denote the variance of εt+1 conditional

on Mt,t+1, that is, Et
[
ε2
t+1 |Mt,t+1

]
= ϑt (Mt,t+1), i.e., ϑt (Mt,t+1) is the idiosyncratic variance of

the returns. It follows that QRPt = Covt
(
Mt,t+1, β

2
t (Mt,t+1)

)
+ Covt (Mt,t+1, ϑt (Mt,t+1)). This

shows that, even though the QRP is free from idiosyncratic risk of the quadratic payoff, it is not

free from the idiosyncratic volatility of the return (the payoff itself). Instead, the QRP is partly

characterized by the idiosyncratic variance of the returns and related firm characteristics.

We now decompose the asset return r and the quadratic payoff r2 into a gain and a loss

component as follows:

r = g − l and r2 = g2 + l2, where g = max (r, 0) and l = max (−r, 0) , (2)

where g and l represent the gain and the loss, respectively. In this decomposition, the gain and the

loss are nonnegative amounts flowing in and out of the investor’s wealth, and they represent the

magnitudes of the nonnegative and nonpositive parts of the asset payoff, respectively. Since the

positive gain and the positive loss cannot occur simultaneously, we have that g · l = 0. This gain-

loss decomposition of an asset’s payoff is exploited as an asset pricing approach by Bernardo and

Ledoit (2000). Since a typical investor prefers a large gain g and a small loss l, the gain uncertainty
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(measured by the quadratic gain g2) thus appears as a good uncertainty while the loss uncertainty

(measured by the quadratic loss l2) is a bad uncertainty. These views are consistent with the

literature documenting that good and bad variances are not equally undesirable by investors.2

Just as the return uncertainty fluctuates, its two components, the loss uncertainty and the gain

uncertainty, do too. Investors are typically averse to fluctuating loss uncertainty because large loss

fluctuations may lead to strong loss uncertainty levels and extreme losses. They would typically be

willing to swap this fluctuating quadratic loss against a strike higher than the expected quadratic

loss — pay a positive loss QRP — to enjoy being better off in bad times when the quadratic

loss significantly outperforms the strike. Likewise, risk-averse investors dislike fluctuating gain

uncertainty because large fluctuations may lead to weak uncertainty levels and poor gain potential.

Therefore, investors would typically be willing to swap fluctuating quadratic gain against a strike

lower than the expected quadratic gain — require a positive gain QRP — to endure being worse

off in bad times when the quadratic gain significantly falls below the strike.

Consistent with these views, we define the loss QRP and the gain QRP as follows:

QRPlt ≡ EQ
t

[
l2t,t+1

]
− Et

[
l2t,t+1

]
and QRPgt ≡ Et

[
g2
t,t+1

]
− EQ

t

[
g2
t,t+1

]
= Covt

(
Mt,t+1, l

2
t,t+1

)
= Covt

(
−Mt,t+1, g

2
t,t+1

)
,

(3)

so that they are positive if uncertainty levels tend to move adversely in hard times when the average

investor’s marginal utility Mt,t+1 is high.3 Thus, using the gain-loss decomposition of the quadratic

payoff in equation (2), the (net) QRP in equation (1) may be written as:

QRPt = QRPlt −QRPgt . (4)

Equation (4) shows that the (net) QRP represents the net cost of insuring fluctuations in loss

uncertainty, that is the premium paid for the insurance against fluctuations in loss uncertainty net

2For example, Markowitz (1959) advocates the downside semi-variance (i.e, the bad variance) as a measure of
a stock’s downside risk, instead of the total variance, because the latter also accounts for the upside semi-variance
(i.e, the good variance), which measures the gain potential of a stock. More recently, Feunou, Jahan-Parvar, and
Tédongap (2013), Bekaert, Engstrom, and Ermolov (2015), and Segal, Shaliastovich, and Yaron (2015) find that
expected excess returns are positively (negatively) related to the bad (good) variance. This suggests that investors
are averse to the increases in the bad variance yet they also desire increases in the good variance.

3The pricing kernel Mt,t+1 is equal to the growth in the marginal value of the investor’s wealth (Cochrane, 2005).
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of the premium earned to compensate for the fluctuations in gain uncertainty.4

2.2 The Cross-Section of Quadratic Risk Premium and Expected Stock Returns

We can measure QRP at the aggregated market level or the disaggregated firm-level. For either the

market or firm-level, by definition, the QRP has a premium interpretation as evident in equation

(1). Although the state price density Mt,t+1 in this equation is free from the linear factor-based

specification, we can still use the linear framework to illustrate the intuition. In the linear case

where Mt,t+1 is assumed to be a linear combination of various systematic factors, equation (1)

would relate QRP to the weighted sum of the covariances between the stock’s quadratic payoff and

each of these systematic factors.5 This suggests that, at the firm-level, the idiosyncratic component

of the quadratic payoff that is orthogonal to the systematic factors is not accounted for by its QRP.

In light of equation (3), this is also the case for the loss and gain QRPs which means that our

measures of downside and upside risk are free of the idiosyncratic risk in the quadratic loss and

gain, respectively, but are still determined by the idiosyncratic volatility of returns. Also, since

our risk measures are not exposures of excess returns themselves (but rather the quadratic payoff)

onto systematic factors, nor are they obtained as betas through times series regressions, they can

be viewed as characteristics similar to size, book-to-market, momentum, or idiosyncratic volatility.

Daniel and Titman (1997, 2012) favor such a methodological approach.

To provide the theoretical predictions of the cross-sectional relation between the individual stock

QRP components and expected excess returns, we consider the risk-reward point of view. Since

investors dislike assets with higher downside risk, they should require higher expected returns for

holding those assets. The downside risk of an asset measured by its fluctuating loss uncertainty

is undesirable as large fluctuations may lead to strong uncertainty levels and extreme losses. The

4In a long-run risk model, Held, Kapraun, Omachel, and Thimme (2018) compute the two components of QRP
(which they refer to as the premia on second semi-moments) of the aggregate stock market and confirm that the loss
and gain QRPs as defined in equation (3) are positive. This illustrates that, for an asset for which the uncertainty
moves together with the average investor’s marginal utility, the cost of insuring against fluctuations in loss uncertainty
exceeds the compensation for being exposed to fluctuations in gain uncertainty, and QRP measures by how much.

5With a set of identified factors, equation (1) can be formally tested to determine whether the cross-sectional
differences in QRP across stocks are explained by the cross-sectional differences in exposures of the quadratic payoff
on the systematic factors. González-Urteaga and Rubio (2016) address this issue in the case of the variance risk
premium by using selective groups of systematic factors including the market return together with the squared
market return, and the market variance risk premium together with the default premium (calculated as the difference
between Moody’s yield on Baa corporate bonds and the ten-year Treasury bond yield). Their findings suggest that
the market variance risk premium and the default premium are key factors explaining the average variance risk
premium across stock portfolios.
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positive loss QRP paid by investors is to insure against this downside risk in bad times. Since this

insurance premium increases as the degree of damage increases in bad times, assets with high loss

QRP must command higher expected excess returns in the cross-section.

A similar reasoning applies to the gain QRP. Since investors dislike assets with higher upside risk,

they should require a higher expected return for holding them. An asset’s upside risk measured

by its fluctuating gain uncertainty is undesirable because large fluctuations may lead to weak

uncertainty levels and poor gains. The positive gain QRP is required by investors to compensate

for this low upside potential in bad times. Since this compensation increases as the degree of shrink

in gains increases in bad times, assets with high gain QRP must command higher expected excess

returns in the cross-section.

In Section 5, we present the empirical results of the cross-sectional relation between individual

stock loss and gain QRP and expected excess returns.

2.3 Relation with the Variance Risk Premium

We next discuss the relation between QRP and VRP. Both QRP and VRP share the premium

definition but they regard different measures of uncertainty: the quadratic payoff versus the realized

variance. Therefore, the difference between QRP and VRP hinges on the difference between the

quadratic payoff and the realized variance. For a given stock, we observe returns at regular high-

frequency time intervals of length δ. The monthly realized return rt−1,t and the monthly realized

variance RVt−1,t are defined by aggregating rt−1+jδ and r2
t−1+jδ, respectively:

rt−1,t =

1/δ∑
j=1

rt−1+jδ and RVt−1,t =

1/δ∑
j=1

r2
t−1+jδ, (5)

where 1/δ is the number of high-frequency returns in a monthly period, e.g., δ = 1/21 for daily

returns and rt−1+j/21 denotes the jth high-frequency return of the monthly period starting from

day t−1 and ending on day t. The quadratic payoff and the realized variance are related as follows:

r2
t−1,t = RVt−1,t + 2RAt−1,t, where RAt−1,t =

1/δ−1∑
i=1

1/δ−i∑
j=1

rt−1+jδrt−1+jδ+iδ, (6)

and RAt−1,t is the realized autocovariance.
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The realized variance is a measure of fluctuating uncertainty based on higher-frequency returns,

while the quadratic payoff is a measure of fluctuating uncertainty based on lower-frequency returns.

Equation (6) shows that the quadratic payoff is approximately equal to the realized variance if and

only if the realized autocovariance is negligible. To examine whether this is the case, we take daily

S&P 500 index return data as an example. In Panel A of Figure 1, we plot the monthly realized

autocovariance of the index in squared percentage unit from January 1996 to December 2015. This

figure shows that the realized autocovariance is negative 71.25% of the time with the 95% confidence

interval equal to [69.27%, 73.23%], thus the quadratic payoff is frequently smaller than the realized

variance. To further prove that the realized autocovariance is non-negligible, we standardize it

by computing its ratio relative to the average of the quadratic payoff and the realized variance.

In Panel B of Figure 1, we plot the monthly standardized realized autocovariance. We find that

its absolute value averages to 0.51 in our sample; thus, the realized autocovariance represents on

average about 50.90% (with the 95% confidence interval equal to [49.58%, 52.23%])— a sizeable

portion of the uncertainty level.

The realized variance computed from daily returns may contain considerable noise. To non-

parametrically correct this bias, prior studies advocate the use of high-frequency intra-day return

data. Therefore, we use 5-min intra-day and overnight returns to compute an alternative measure

of the realized variance. Results are available in Figure B1 in the Internet Appendix. In summary,

the realized autocovariance is negative 67.08% of the time with the 95% confidence interval equal to

[61.14%, 73.03%], thus the quadratic payoff is again frequently smaller than the realized variance,

but to a slightly lesser degree. We also find that the standardized RA’s absolute value averages to

0.50; thus, the realized autocovariance represents on average about 49.99% (with the 95% confidence

interval equal to [46.13%, 53.86%]) — again a sizeable portion of the uncertainty level.

To study the difference between QRP and VRP, we adopt the theoretical definition of VRP in

Bollerslev, Tauchen, and Zhou (2009) as follows::

VRPt ≡ EQ
t [RVt,t+1]− Et [RVt,t+1]

=

1/δ∑
j=1

(
EQ
t

[
r2
t−1+jδ

]
− Et

[
r2
t−1+jδ

])
.

(7)
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In the empirical exercises of the VRP literature, the risk-neutral expectation of quadratic payoff

EQ
t

[
r2
t,t+1

]
is often used to proxy for the risk-neutral expected realized variance EQ

t [RVt,t+1]. This

is, for example, the case in Feunou, Jahan-Parvar, and Okou (2018) and Kilic and Shaliastovich

(2019). By doing so, they use an empirical measure of the variance risk premium ṼRPt defined by:

ṼRPt = EQ
t

[
r2
t,t+1

]
− Et [RVt,t+1]

= VRPt + 2EQ
t [RAt,t+1] .

(8)

By definition, ṼRPt is not a coherent measure of a risk premium (i.e., it is not the difference between

the risk-neutral and physical expectations of the same quantity). Instead, ṼRPt is a biased measure

of VRPt, where the bias equals 2EQ
t [RAt,t+1]. Furthermore, this bias is not necessarily negligible.

As shown in panels A and B of Figure 1, RAt,t+1 of the S&P 500 index is non-negligible and

mostly negative through time. We then cannot reasonably argue that the bias 2EQ
t [RAt,t+1] or

the difference between VRP and ṼRPt is negligible. While we provide an illustration in the case

of the market index, we have strong reasons to believe that this non-negligible bias in the VRP

measurement extends to a large number of stocks.

Lastly, we argue that this bias from the realized autocovariance is even more severe when we

decompose VRP into its loss and gain components. The gain-loss decomposition of the squared

return in equation (2) allows us to write the realized variance as the total of two components: the

cumulative sum of squared high-frequency gains and the cumulative sum of squared high-frequency

losses, which, similar to the quadratic gain and the quadratic loss can be interpreted as measures of

gain uncertainty and loss uncertainty, respectively. These two components of the realized variance

are what Barndorff-Nielsen, Kinnebrock, and Shephard (2010) refer to as realized semi-variances,

formally defined as:

RVt−1,t = RVg
t−1,t + RVl

t−1,t where RVg
t−1,t =

1/δ∑
j=1

g2
t−1+jδ and RVl

t−1,t =

1/δ∑
j=1

l2t−1+jδ. (9)

where RVg
t−1,t and RVl

t−1,t are referred to as bad and good variances in the literature (e.g., Patton

and Sheppard 2015; Kilic and Shaliastovich 2019; Bollerslev, Li, and Zhao forthcoming). Note

that, even if a negligible magnitude of the realized autocovariance made the quadratic payoff r2
t−1,t
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proxy for the realized variance RVt−1,t, the quadratic loss (gain) would not proxy for the loss (gain)

realized variance. In fact, the quadratic loss (gain) is a censored variable while the loss (gain)

realized variance is not. Therefore, the quadratic loss (gain) is zero 63% (37%) of the time in our

S&P 500 index return sample while the loss (gain) realized variance is always positive and can be

strongly positive at times, as illustrated in Panel C (D) of Figure 1.

In summary, we show that the quadratic payoff can be very different from the realized variance.

This is also partly because the equity risk premium at a lower frequency is non-zero and time-

varying. The empirical evidence indeed supports this large wedge between the quadratic payoff

and the realized variance at a monthly frequency. We also find that this difference is much more

significant between the quadratic loss and gain and their corresponding semi-variances.

3 Measuring the Quadratic Risk Premium

Measuring the QRP amounts to estimating the physical and risk-neutral conditional expectations of

quadratic payoff and taking their difference. In this section, we describe our estimation methodology

for these two conditional expectations and their loss and gain components. Both the risk-neutral

expected quadratic loss and gain are model-free following Bakshi, Kapadia, and Madan (2003). We

measure both the physical expected quadratic loss and gain as projections on the space spanned

by historical loss and gain realized variances.6

3.1 Estimating the Risk-Neutral Conditional Expected Quadratic Payoff

In practice, prior studies estimate the risk-neutral conditional expectation of quadratic payoff di-

rectly from a cross-section of option prices. Bakshi, Kapadia, and Madan (2003) provide model-free

formulas linking the risk-neutral moments of the stock returns to explicit portfolios of options.

These formulas are based on the basic notion, first presented in Bakshi and Madan (2000), that

6In theory, these expectations are conditional on the same information set. While asset pricing models imply that
both the physical and risk-neutral conditional expectations of uncertainty measures depend on the same processes
governing the state of the economy (e.g., Bollerslev, Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011; Bonomo,
Garcia, Meddahi, and Tédongap, 2015), this theoretical implication is hard to satisfy. This mismatch of conditioning
information in the measurement of the two conditional expectations may explain some differences between theory
and practice. For example, the estimates of the QRP as defined in equation (1) may display negative values for
the aggregate stock market although theory predicts they should be positive. The same holds for the VRP (see, for
example, the plots of the aggregate stock market VRP in Bollerslev, Tauchen, and Zhou, 2009).
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any payoff over a time horizon can be spanned by a set of options with different strikes with the

same maturity matched with this investment horizon.

We adopt the notation in Bakshi, Kapadia, and Madan (2003), and define Vt (τ) as the time-t

price of the τ -maturity quadratic payoff on the underlying stock. Bakshi, Kapadia, and Madan

(2003) show that Vt (τ) can be recovered from the market prices of out-of-the-money (OTM) call

and put options as follows:

Vt (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK +

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK. (10)

where St is the price of underlying stock, and Ct (τ ;K) and Pt (τ ;K) are call and put prices with

maturity τ and strike K, respectively. The risk-neutral expectation of the quadratic payoff is then

EQ
t

[
r2
t,t+τ

]
= erf τVt (τ) , (11)

where rf is the continuously compounded interest rate.

We compute Vt (τ) for each firm on each day and by each days-to-maturity. In theory, computing

Vt (τ) requires a continuum of strike prices, while in practice we only observe a discrete and finite

set of them. Following Jiang and Tian (2005) and others, we discretize the integrals in equation (10)

by setting up a total of 1001 grid points in the moneyness (K/St) range from 1/3 to 3. First, we

use cubic splines to interpolate the implied volatility inside the available moneyness range. Second,

we extrapolate the implied volatility using the boundary values to fill the rest of the grid points.

Third, we calculate option prices from these 1001 implied volatilities using the formula of Black and

Scholes (1973).7 Next, we compute Vt (τ) if there are four or more OTM option implied volatilities

(e.g. Conrad, Dittmar, and Ghysels 2013 and others). Lastly, to obtain Vt (30) for a firm on a given

day, we interpolate and extrapolate Vt (τ) with different τ . This process yields a daily time series

of the risk-neutral expected quadratic payoff for each eligible firm in the sample.

Note that the price of the quadratic payoff Vt (τ) in equation (10) is the sum of a portfolio of

7We apply these steps to the estimation of the market and individual risk-neutral expected quadratic payoffs.
Although the market options are European, the individual equity options are American. Therefore, directly using the
mid-quotes of individual options is inappropriate because the early exercise premium may confound our results. To
avoid this issue, we use the implied volatilities provided by OptionMetrics. These implied volatilities are computed
using a proprietary algorithm based on the Cox, Ross, and Rubinstein (1979) model, which takes the early exercise
premium into account.
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OTM call options and a portfolio of OTM put options:

Vt (τ) = V g
t (τ) + V l

t (τ) , (12)

where:

V l
t (τ) =

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK and V g

t (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK. (13)

In Subsection A.1 of the Internet Appendix, we analytically prove that V g
t (τ) is the price of the

quadratic gain, and V l
t (τ) is the price of the quadratic loss. Held, Kapraun, Omachel, and Thimme

(2018) also provide proof to support this loss and gain decomposition. Hence, the risk-neutral

expectation of quadratic loss and gain are:

EQ
t

[
l2t,t+τ

]
= erf τV l

t (τ) and EQ
t

[
g2
t,t+τ

]
= erf τV g

t (τ) . (14)

While the risk-neutral expected quadratic payoff can be estimated from available option data

following Bakshi, Kapadia, and Madan (2003), estimating the risk-neutral expected variance is

empirically infeasible in a similar model-free fashion. As shown in equation (7), the risk-neutral

expected realized variance is the sum of the risk-neutral expectations of squared high-frequency

returns. To estimate these expectations, one needs observable options with high-frequency maturity

δ or variance strikes in a variance swap market. However, high-frequency (daily or 5-min) maturing

options are not traded and liquid variance swap markets only exist for a minority of large stocks

and indices. By using QRP instead of VRP, we also alleviate the severe empirical limitations in

computing risk-neutral expected realized variance, thus we can accommodate for a large cross-

sectional study with companies of various size.

3.2 Estimating the Physical Conditional Expected Quadratic Payoff

We use a regression model to estimate the expectations of squared monthly returns and the loss and

gain components. We assume that, conditional on time-t information, monthly log returns rt,t+1

follow a normal distribution with time-varying mean µt = Et [rt,t+1] and time-varying variance
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σ2
t = Et [RVt,t+1]. These expectations are therefore

Et
[
r2
t,t+1

]
= µ2

t + σ2
t and


Et
[
l2t,t+1

]
=

(
µ2
t + σ2

t

)
Φ

(
−µt
σt

)
− µtσtφ

(
µt
σt

)
Et
[
g2
t,t+1

]
=

(
µ2
t + σ2

t

)
Φ

(
µt
σt

)
+ µtσtφ

(
µt
σt

)
,

(15)

where φ (·) and Φ (·) are the standard normal density and cumulative distribution functions, re-

spectively. An estimate of µt(= Z>t βµ) is the fitted value from a linear regression of monthly

returns onto predictors Zt, while an estimate of σ2
t is the fitted value from a linear regression of

monthly total realized variances onto the same predictors Zt. More specifically, Et [RVt,t+1] =

Et
[
RV g

t,t+1

]
+ Et

[
RV l

t,t+1

]
, Et

[
RV g

t,t+1

]
= Z>t β

g
σ and Et

[
RV l

t,t+1

]
= Z>t β

l
σ.8

Predictors Zt include the constant, and the loss (bad) and gain (good) realized variances of the

past month (t−1 to t), the past five months (t−5 to t), and the past twenty-four months (t−24 to

t). Our model is a variant of the HAR-RV model of Corsi (2009). While the original HAR-RV model

is used to forecast daily realized variance, our variant model targets the monthly realized variance.

In our forecasting regression, the loss and gain components of the realized variance are separate

regressors to account for their asymmetric effects in return forecasting (e.g., Feunou, Jahan-Parvar,

and Tédongap 2013; Bekaert, Engstrom, and Ermolov 2015; Patton and Sheppard 2015) and in

volatility forecasting (e.g., Patton and Sheppard 2015). Prior studies provide strong evidence that

decomposing the realized variance into its loss and gain components significantly improves the

explanatory power of various HAR-RV models.

4 Data and Descriptive Statistics

4.1 Data

Our sample runs from January 1996 to December 2015. Data on individual stock and S&P 500

returns are from the Center for Research in Security Prices (CRSP). We keep two more years of

returns (January 1994-December 1995) to compute the physical expectations of realized variance

for the start of the sample. Following the literature on cross-section studies, we keep only common

stocks listed on the NYSE, AMEX, and NASDAQ, which are firms that have CRSP share codes of

8Estimates of µt and σ2
t are consistent and unbiased quasi-maximum likelihood estimators. Diagnostic tests show

that we can’t reject the conditional normality assumption at the 5% significance level for the large majority of stocks.
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10 and 11 and CRSP exchange code of 1, 2 or 3. In order to control for firm-level characteristics, we

collect data on market capitalization (price times outstanding shares) and book values from CRSP

and Compustat, respectively. For each firm, its size is computed as the log of market capitalization,

and the firm’s book-to-market ratio is its book value divided by its market capitalization.9 To gauge

the performance of a stock in the past year, we compute the prior 12-month returns as the individual

stock’s cumulative excess returns from month t − 13 to t − 2 to avoid spurious effects. To control

for market factors, we collect the data on the market excess returns (market returns in excess of

the one-month T-bill rate), the size, value, and momentum factors from Kenneth French’s data

library.10 We also obtain data on VIX from the Chicago Board Option Exhange (CBOE).

For the estimation of the risk-neutral quadratic payoff, we rely on stock options (individual

firm-level and S&P 500) obtained from the IvyDB OptionMetrics database. We exclude options

with missing or negative bid-ask spread, zero bid, or zero open interest (e.g, Carr and Wu 2009).

Following Bakshi, Kapadia, and Madan (2003), we restrict the sample to out-of-the-money options.

To ensure that our results are not driven by misleading prices, we follow Conrad, Dittmar, and

Ghysels (2013) and exclude options that do not satisfy the usual option price bounds, missing

implied volatility, or options with less than 7 days to maturity. For a firm on a given day and a

given maturity, we record the risk-neutral expected quadratic payoff as missing if there are less

than four OTM implied volatilities. For details on the estimation methodology, see section 3.1.

To merge the option data with the CRSP stock data, we follow the approach in Duarte, Lou,

and Sadka (2006). The size of the cross-section is mostly determined by the number of firms with

available and eligible stock option data. In January 1996, the cross-section contains 426 firms,

while in December 2015, the size of the cross-section has grown significantly to 1,245 firms. The

average size of the cross-section throughout our sample period is approximately 898.

4.2 Descriptive Statistics

Our sample covers a wide range of firm size. We report descriptive statistics for firm-level char-

acteristics in Panel A of Table 1. Median values of the loss, gain, and net QRPs are positive on

9Consistent with the literature, we remove firms with negative book values. Since book value is only observed
yearly, the daily variability of the book-to-market comes solely from the changes in the market capitalization. Thus
we may have extremely large book-to-market for distressed firms if these firms’ market capitalization significantly
decrease within days. Therefore, we winsorize the book-to-market ratio at the 99% level.

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html.
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average, equal to 32.57, 13.85, and 13.82 in monthly percentage-squared units, respectively. The

median value of stock illiquidity (ILLIQ) has a mean of 4.8e-3 with positive skewness and kurtosis,

which are comparable to values reported in Amihud (2002). The median value of firm risk-neutral

skewness (SKEW) is on average -0.51, which is in the same range as values reported by Conrad,

Dittmar, and Ghysels (2013). The median value of firm idiosyncratic volatility (IVOL) is 2.04% on

average, which also compares well with the findings of Hou and Loh (2016).

In Panel A of Table 1, we also show the descriptive statistics of market-wide factors. These

factors are control variables in subsequent cross-sectional analyses of the relation between expected

stock returns and QRP. The market loss QRP is on average 15.65 while the market gain QRP

is much smaller on average equal to 2.92, which leads to a positive average value of 12.73 for

the market net QRP.11 Furthermore, the market loss and gain QRP have distinct dynamics. For

instance, the market loss QRP exhibits twice the volatility of market gain QRP (14.32 verse 7.11);

the kurtosis of market loss QRP is half the kurtosis of gain QRP (6.22 verse 12.58); and the market

loss QRP is more persistent with a first-order autocorrelation coefficient of 0.79 compared to the

gain QRP’s much lower autocorrelation of 0.49. The market risk-neutral skewness is negative on

average with a value of -1.96, consistent with the values reported in previous studies; for example,

-1.26 in Bakshi, Kapadia, and Madan (2003).

Panel B of Table 1 shows the time series averages of the cross-sectional correlations between

firm-level variables. Since the net QRP is the difference between the loss and gain QRP, as expected,

the net QRP is positively correlated with the loss QRP and negatively correlated with the gain

QRP in the cross-section, with correlation values of 0.87 and -0.61, respectively. The loss QRP

and the gain QRP have a cross-sectional correlation of -0.20. Interestingly, the QRP measures

show little cross-sectional correlations with other firm characteristics such as the stock illiquidity,

risk-neutral skewness, idiosyncratic volatility, etc. The absolute correlation values do not exceed

0.15 in general. This suggests that we can rule out potential multicollinearity issues that may

affect statistical inference in subsequent empirical tests; for example, in cross-sectional regressions

of excess returns on quadratic risk premium and other firm characteristics.

11For comparison, the mean of market total VRP as reported by Bollerslev, Tauchen, and Zhou (2009) is 18.30.
The relatively smaller average value of gain QRP also suggests that the average investor is relatively indifferent about
fluctuations in market gain uncertainty, although she does care about fluctuations in market loss uncertainty. In a
sense, these statistics also corroborate the findings of Feunou, Jahan-Parvar, and Okou (2018), who shows that the
market bad VRP is the most important component of the market total VRP.
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In Panel A of Figure 2, we plot the market loss QRP on the right y-axis and the month-by-

month cross-sectional median values of firm-level loss QRP on the left y-axis. All variables are

reported in monthly percentage-squared units. In all months, both the market loss QRP and

the median firm loss QRP are nonnegative. They both peak during large market downturns. In

particular, the market loss QRP peaked at 61.80 in September 1998 during the long-term capital

management (LTCM) crisis, 61.11 in September 2002 toward the end of the dot-com bubble, and

80.02 in January 2009 during the recent financial crisis. Similarly, in Panel B, we plot the market

gain QRP, together with the month-by-month median values of firm-level gain QRP. In roughly

two thirds of our sample period, the market gain QRP is positive. On the other hand, the median

firm gain QRP is above zero in almost all periods of our sample with few exceptions. Among these

crisis periods, the market gain QRP peaked at 14.52 in September 1998 during the LTCM crisis,

and 47.74 in October 2008 during the recent financial crisis.

5 Results

We now provide an empirical assessment of the cross-sectional relationships between the reward

for investing in stocks (measured by their expected excess returns), and the stock’s downside and

upside risks (measured by their loss QRP and gain QRP, respectively). We assess these relationships

through portfolio sorts and cross-sectional regressions. Since the loss and gain QRP have little

cross-sectional correlation as shown in Panel B of Table 1, we start by studying univariate sorted

portfolios based on these QRPs. Next, we pair up each of our QRPs with each of the control

variables investigated in the literature in bivariate portfolio sorts. These two-dimensional sorts

are useful to examine QRPs’ additional cross-sectional predicting power beyond existing variables.

Finally, we run firm-level cross-sectional regressions to jointly estimate the prices of risks associated

with the loss and gain QRP, when controlling altogether for multiple cross-sectional effects.

5.1 Single Sorting

We first analyze univariate portfolio sorts involving our estimates of firm-level QRPs. More specif-

ically, at the end of each month, we sort firms into quintiles based on their corresponding monthly

average values for the specific characteristic, such as the loss, gain or net QRPs. Quintile 1 thus
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contains the firms with QRP values in the bottom 20% while quintile 5 contains firms with QRP

values in the top 20%. Then, for each quintile we use end-of-month market capitalizations to form

a value-weighted portfolio and measure its excess returns over the next month.12 For each quintile,

we report the cross-sectional average value of a specific characteristic (the loss, gain or net QRPs),

as well as the portfolio average monthly excess returns and alphas, where alphas are computed

relative to the five-factor model of Fama and French (2015).

Panel A of Table 2 shows that there is a wide range of loss QRP values among our quintile

sorted portfolios based on the loss QRP. The time-series average of loss QRP are -145.96 and

231.63 for the lowest and highest quintiles, respectively. Similarly, Panel B of Table 2 shows that

the gain QRP values, among our gain QRP sorted portfolios, also cover a wide range from a low

of -59.68 to a high of 163.99 on average. Take the two lowest quintiles for example, as discussed in

Subsection 2.2, the lowest quintiles consists of firms which are either associated with weak downside

risk (measured by its loss QRP) or immense upside potential (measured by its gain QRP) in bad

times, in contrast to firms in the highest quintiles, respectively.

Turning to the cross-sectional pricing effect of the QRP components (the loss, gain or net

QRPs), we present the portfolio average monthly excess returns and alphas in Table 2. In Panel A

of Table 2, when firms are sorted based on their loss QRPs, the average excess returns and alphas

are monotonically increasing from the lowest quintile to the highest quintile. The average monthly

excess returns of the lowest quintile is -0.98% which is significantly lower than the average value

2.10% for the highest quintile portfolio, resulting a high-minus-low difference of 3.08% per month on

average. Beyond that, the risk-adjusted performance measured by portfolios’ alpha confirms that

on average the highest quintile portfolio is better remunerated than the lowest quintile portfolio.

The high-minus-low portfolio has a alpha of 2.79% per month with a t-statistic equal to 6.82 which

is significant at the 99% confidence level. As discussed in Subsection 2.2, investors are risk-averse

and prefer firms with lower loss QRP because these firms’ downside risk tend to disappear in bad

times. Therefore investors are happy to face less or no insurance costs and they are willing to pay

more for such assets, thus accepting a lower premium to invest in them. In contrast, firms with

higher loss QRP are often disliked by investors since these firms’ downside risk tend to be severe

12Measuring post-ranking excess returns in portfolio sorts avoids spurious effects (e.g., Fama and French 1993; Ang,
Hodrick, Xing, and Zhang 2006; Chang, Christoffersen, and Jacobs 2013).
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in bad times. As a result, investors incur more insurance costs and they are willing to pay less for

such assets, thus requiring a larger premium.

In Panel B of Table 2, when sorting with respect to gain QRP, we also find that average excess

returns are monotonically increasing from the lowest quintile to the highest quintile portfolio. The

average monthly excess returns of the lowest quintile is -0.97% which is significantly lower than the

average value 1.95% for the highest quintile portfolio, resulting a high-minus-low difference of 2.95%

per month on average. Beyond that, the risk-adjusted performance measured by portfolios’ alpha

again confirms that on average the top quintile portfolio performs better than the bottom quintile

portfolio does. The high-minus-low portfolio has a alpha of 2.78% per month with a t-statistic

equal to 7.94 which is significant at the 99% confidence level.

Following our discussion in Subsection 2.2, investors are potential-seeking and prefer firms with

lower gain QRP since these firms’ upside potential tend to be strong in bad times. Therefore,

investors require less or no protections and they are then willing to pay more for such assets, thus

accepting a lower premium. To the contrary, investors dislike firms with higher gain QRP since

these firms’ upside potential shrink in bad times. This leads to a larger required compensation for

such assets thus a higher premium.

Panel C of Table 2 shows results when firms are sorted on their net QRPs — the difference

between loss and gain QRPs. The high-minus-low average excess returns and alphas are much

smaller compared to sorting on the loss or gain QRP, and not statistically significant at conventional

levels. This suggest that, although the premium on loss and gain uncertainty is highly relevant for

the cross-section of expected stock returns, the premium for the net effect is not. Therefore, it is

crucial to decompose the total uncertainty of a stock into its loss and gain components.

To summarize, the loss QRP and the gain QRP generate monotonic patterns in the average

returns of sorted portfolios with statistically significant differences between the highest and the

lowest quintiles. Sorting firms on their loss QRPs leads to a somewhat larger heterogeneity in

performance than sorting firms on their gain QRPs. On the other hand, the net QRP does not

generate monotonic trends in returns or alphas, and we find no evidence that it is priced in the

cross-section of expected stock returns.13 These results suggest that the loss QRP and the gain

13The results also hold for value-weighted tercile and decile portfolios, as well as for equally-weighted portfolios.
These untabulated results are available upon request.
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QRP contain different information contents, and it is crucial to consider these two QRP components

separately for cross-section of expected stock returns.

5.2 Double Sorting

We now examine whether variations in QRP components (the loss and gain QRPs) are subsumed

by various cross-sectional effects discussed in the extant literature. Following Fama and French

(1992), we first sort firms into five groups based on a key variable (systematic risk or characteristic)

representing a specific cross-sectional effect documented in the literature. Next, within each group,

we further sort firms into quintile portfolios based on each QRP component. If the information

content of the QRP component had no additional value for investors, then average excess returns

on quintile portfolios from the second sorts based on the QRP component would not generate a

significant high-minus-low difference. For the second sorts, we report the average difference of the

high-minus-low (“5-1”) excess returns, together with the corresponding t-statistic. Here the highest

quintile “5” contains firms with the highest QRP component and the lowest quintile “1” contains

firms with the lowest QRP component.

5.2.1 Controlling for Systematic Risk Measures

We control for systematic risk measures that are motivated by leading asset pricing models and

financial theories. Since our loss and gain QRPs have asymmetric effects on cross-section of ex-

pected stock returns, we start by considering downside risk measures which are also motivated by

this asymmetric treatment.14 Farago and Tédongap (2018) prove that in an intertemporal equi-

librium asset pricing model featuring generalized disappointment aversion (GDA) and changing

macroeconomic uncertainty, besides the market return and market volatility, three downside risk

factors are also priced: a downstate factor, a market downside factor, and a volatility downside

factor.15 These five GDA factors depend on two variables: the log market return and changes in

14The asymmetric treatment of loss and gain has a long standing in the academic literature (see for example Roy,
1952 and Markowitz, 1959) and has motivated the development of theories of rational behavior under uncertainty
that imply priced downside risk in capital markets (see for example Bawa and Lindenberg, 1977, Kahneman and
Tversky, 1979, Quiggin, 1982, Gul, 1991, and Routledge and Zin, 2010).

15Empirical studies by Ang, Chen, and Xing (2006) and Lettau, Maggiori, and Weber (2014) examine the pricing
of market downside risk as motivated by the disappointment aversion theory of Gul (1991), for several asset classes.
More recently, Farago and Tédongap (2018) show that in the presence of fluctuating macroeconomic uncertainty,
volatility downside risk is priced in addition to market downside risk, and their findings give strong support to the
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market conditional variance. To measure the unobservable market conditional variance, we use σ2
t

estimated in Section 3.2. Following Farago and Tédongap (2018, see their Online Appendix), we

use short-window regressions to estimate the stocks’ exposures to the GDA factors. Details are

provided in Subsection A.2 in the Internet Appendix.

Table 3 shows the results of the double sorts when we control for exposures to these five GDA

factors in the first five panels. Note that these five exposures are obtained from the same regression

all together, while double sorts pair up each of these exposures with a QRP component one at a

time. In Panel A, firms with high loss QRP outperform those with low loss QRP within all five

groups of each of the GDA factor exposures. For instance, when we control for exposures to the

three downside risk factors, the sizeable high-minus-low spreads range between 2.14% and 4.08%

per month. Likewise in Panel B, firms with high gain QRP outperform those with low gain QRP

within all five groups of each of the GDA factor exposures, with sizeable spreads ranging between

1.96% and 4.54% per month when controlling for exposures to the three downside risk factors of the

GDA model. All reported spreads are statistically significant at the 95% or higher confidence level.

This suggests that the cross-sectional variation in average excess returns reflects the heterogeneity

in firm QRP components that is unrelated to heterogeneous exposures to leading downside risk

measures across stocks.16 We finally observe from Table 3 that patterns of the alphas are very

similar to patterns of the expected excess returns across the different quintile portfolios.

We consider three other systematic risk factors for which variations are likely correlated with

firm-level QRP components, namely the market loss and gain QRPs (see Figure 2), and the market

risk-neutral skewness. The choice of market QRP components is motivated from the consumption-

based general equilibrium asset pricing model proposed by Bollerslev, Tauchen, and Zhou (2009)

featuring time-varying risk in the stochastic volatility. Their model suggests three cross-sectional

pricing factors: market excess returns, innovations in market conditional variance, and innovations

in market variance of variance. We substitute the variance of variance factor with the market

loss and gain QRPs and measure firm exposures to these two market QRP components from

the resulting four-factor model.17 Lastly, firm exposures to the market risk-neutral skewness is

generalized version of the disappointment aversion theory as developed by Routledge and Zin (2010).
16We focus on the work of Farago and Tédongap (2018) when controlling for existing downside risk measures, as

the authors prove theoretically that the downside risk measures in Ang, Chen, and Xing (2006) and Lettau, Maggiori,
and Weber (2014) are particular linear combinations of the multivariate GDA factor exposures.

17Since the model in Bollerslev, Tauchen, and Zhou (2009) also implies that the market VRP is solely determined
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calculated following Chang, Christoffersen, and Jacobs (2013). Details are provided in Subsection

A.2 in the Internet Appendix.

Table 3 also displays double-sorting results on firm QRP components when we control for

exposures to market QRP components and the market risk-neutral skewness. As shown in both

panels, controlling for exposures to either market QRP components or the market risk-neutral

skewness does not hinder the ability of firm QRP components to explain cross-sectional differences

in average excess returns. Firms with high loss QRP outperform those with low loss QRP within all

five clusters of each of the exposures to the market loss QRP and the market risk-neutral skewness,

with sizeable spreads ranging between 2.12% and 4.60% per month. Likewise, firms with high gain

QRP outperform those with low gain QRP within all five clusters of exposures to the market gain

QRP and the market risk-neutral skewness. These spreads range between 1.96% and 4.54% per

month. All reported spreads are statistically significant at the 95% or higher confidence level.

Altogether, these results suggest that the cross-sectional variation in average excess returns

reflects heterogeneity in firm QRP components that is unrelated to the heterogeneous exposures to

various systematic risk across stocks. The systematic risk factors considered here includes the five

GDA factors, the market loss and gain QRPs and the market risk-neutral skewness.

5.2.2 Controlling for Other Firm Characteristics

We again use double-sorting methodology to examine whether the asset pricing information in

some major firm characteristics already account for the pricing information embedded in firm QRP

components.18 If firm QRP components were priced simply because they capture the information

content of other firm characteristics, then controlling for these other firm characteristics would yield

a weak or insignificant cross-sectional variation in average returns across stocks sorted on firm QRP

components. In Subsection A.2 in the Internet Appendix, we provide details about the source and

construction method for the time series of the firm-level characteristics we control for.

First, we control for the implied volatility smirk proposed by Xing, Zhang, and Zhao (2010) and

Yan (2011). The authors define the implied volatility smirk as the difference between the implied

by the variance of variance, and given the bias in measuring VRP and its components in the literature (see the
discussion in 2.3), we choose to use our loss and gain QRPs instead.

18We treat QRP components (the loss, gain and net QRPs) as firm characteristic because there are no observable
market-wide factors such that QRP components measure the associated systematic risk exposures (or factor loadings).
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volatility of out-of-the-money (OTM) puts and at-the-money (ATM) calls. They show that the

implied volatility smirk is a strong predictor of expected returns in the cross-section because it

captures a stock’s tail risk. We compute it for all the firms in our sample. Although both implied

volatility smirk and loss QRP are measuring downside risk, we find that the average cross-sectional

correlation between these two measures is 0.12. This suggests that the implied volatility smirk and

the loss QRP are capturing different information about the downside risk of a stock.

Table 4 presents results when we sort stocks by their QRP components after controlling for the

implied volatility smirk (SKEW thereafter). Both panels show that firms with high loss (gain) QRP

outperform those with low loss (gain) QRP within all five groups of SKEW, with sizeable spreads

ranging between 2.45% (2.40%) and 4.02% (4.27%) per month. All reported “5-1” spreads are

statistically significant at the 95% or higher confidence level. We obtain similar findings for other

measures capturing firm-level downside risk such as the risk-neutral skewness (Rehman and Vilkov,

2012; Conrad, Dittmar, and Ghysels, 2013; Stilger, Kostakis, and Poon, 2016; Bali, Hu, and Murray,

2019) and the physical skewness as measured by the relative signed jump variation (Bollerslev, Li,

and Zhao, forthcoming).19 These results show that the cross-sectional variation in average excess

returns reflects heterogeneity in firm QRP components that is unrelated to heterogeneity in various

firm-level downside risk measures across stocks.

Beyond firm characteristics capturing the downside risk, other characteristics we control for

in Table 4 include the idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006), the stock

illiquidity (Amihud, 2002), the analysts’ coverage of the stock as proxied by the number of analysts

(Hong, Lim, and Stein, 2000), and the demand for lottery as proxied by the maximum daily

return during the previous month (Bali, Cakici, and Whitelaw, 2011). After controlling for these

firm characteristics, there is still a positive and significant cross-sectional relation between QRP

components and expected returns.20 We find that the spreads range between 0.94% and 5.84% per

month and they are all significant at the 95% or higher confidence level.21

19In untabulated results, we also control for the risk-neutral counterpart of the relative signed jump variation
(Huang and Li, 2019), and find that our main results hold.

20We also investigate if the volatility spread (Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010) or option
illiquidity (Goyenko, Ornthanalai, and Tang, 2015) subsume the predictability by QRP components. We report
results for conditional double-sorts on the volatility spread or option illiquidity and QRP components in Table B1
of the Internet Appendix. We find that the QRP components are still strongly significant after controlling for either
the volatility spread or option illiquidity.

21We note that our double-sort results do not imply that cross-sectional predictability by QRP components sub-
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5.3 Fama-MacBeth Regressions

In this subsection, we follow the procedure introduced by Fama and MacBeth (1973) and run month-

by-month cross-sectional regressions using individual firms. These cross-sectional regressions allow

us to estimate the sensitivity of expected returns to stock QRP components—prices of downside and

upside risks associated with loss and gain QRP, respectively. Through cross-sectional regressions,

we can also control for various cross-sectional effects at once. While using portfolios as test assets in

Fama-MacBeth regressions is fairly common, our choice of individual stocks follows Ang, Liu, and

Schwarz (2010) and Gagliardini, Ossola, and Scaillet (2016), who highlight the advantage of the use

of a large cross-section of individual stocks versus a few portfolios. They find that using portfolios

destroys important and necessary information, which leads to much less efficient estimate of the

cross-sectional risk prices. Other than the efficiency gain, using individual stocks as test assets will

also yield more conservative estimates.

In Table 6, we report the time series average of the risk prices of QRP components, where

we control for systematic risk in Fama-MacBeth regressions. There are seven different model

specifications. In Model I, the net QRP is used to explain differences in the expected returns.

The estimated average prices of the net QRP is 0.07 with t-statistic equal to 1.60, which is not

statistically significant at conventional levels.22 In Model II, we use both the loss QRP and the

gain QRP separating the downside risk from the upside risk. The price of the loss QRP (measuring

the downside risk) is 0.616 with t-statistic equal to 8.90, and the price of the gain QRP (measuring

the upside risk) is 1.348 with t-statistic equal 12.06.23 Both effects are statistically significant at

the 99% confidence level. These results show that decomposing the net QRP into two components

(loss QRP and gain QRP) proves meaningful in the Fama-MacBeth regressions.24

sumes the predictability by the other firm characteristics or factor exposure, which have been shown to have significant
predictive power on the cross-section of expected excess returns across all stocks in CRSP for different sample periods
and horizons. Our sample includes only optionable stocks, and covers a different sample period. For example, unt-
abulated monthly univariate sorts based on firms’ exposure to market risk-neutral skewness or firm’s relative signed
jump variation yield statistically insignificant spreads in our sample.

22Harvey, Liu, and Zhu (2016) show that any new factor needs to have a t-statistic greater than 3.0. While the net
QRP is a firm characteristic and not a factor, we still believe the hurdle is relevant.

23These t-statistics may look high but they are in line with previous literature on other anomalies such as e.g.
the asset growth anomaly (Cooper, Gulen, and Schill, 2008). Further, if we run cross-sectional regressions of month
t+ 3 or month t+ 12 excess returns on month t loss and gain QRP, we find that both the t-statistics and coefficients
decrease significantly. These results can be found in Tables B2 to B5 in the Internet Appendix.

24This is similar to the findings of Campbell and Vuolteenaho (2004) and Bansal, Dittmar, and Lundblad (2005).
Starting from the CAPM and the consumption-based CAPM, respectively, the authors decompose total asset risk
into a cash flow component and a discount rate component. They find weak evidence that total asset risk is priced,
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We design five other models (Models III to VII) to test the robustness of Model II. After

controlling for the CAPM beta (Model III), firm exposure to market skewness (Model IV), firm

exposures to market variance and market QRP (Model V), Carhart factor exposures (Model VI),

and GDA factor exposures (Model VII). The statistical significance and economic magnitude of the

prices of loss and gain QRPs remain unchanged. This suggests that cross-sectional predictability

by QRP components is not subsumed by exposures to existing systematic risk factors.

We now turn to the Fama-Macbeth results in Table 7, where we control for other firm character-

istics in Model VIII and IX. In Model VIII, we add the relative signed jump variation RSJ , while

in Model IX we further include a considerably large panel of other firm characteristics including the

idiosyncratic volatility (IV OL), size, book-to-market (B/M), illiquidity (ILLIQ), the risk-neutral

skewness (FSKEW ), realized semi-variances (RV l and RV g), short-term reversal (P01M) and mo-

mentum (P12M). Once again, accounting for these multiple cross-sectional effects does not erode

the statistical significance or economic magnitudes of the prices of QRP components.

In summary, neither the systematic risk nor other firm characteristics appear to drive out either

QRP component of the net QRP. The estimated prices of the loss (gain) QRP range from 0.609

(1.348) to 0.848 (1.677) in Tables 6 and 7. Since the time series average of the cross-sectional

standard deviations of loss (gain) QRP is 270.32 (143.04), a one-standard-deviation increase in

the loss (gain) QRP is associated with a 1.7%–2.3% (1.9%–2.4%) rise in monthly expected stock

returns. These effects are highly economically significant. In contrast, since the average standard

deviation of net QRP is 333.41, a one-standard-deviation increase in the net QRP is only associated

with a 0.23% rise in monthly expected stock returns.

5.4 Robustness Checks

We perform a number of additional checks to verify the stability of our findings. All these results

are in the Internet Appendix.

although have strong evidence for priced cash flow risk. Given these findings, Bansal, Dittmar, and Lundblad (2005)
argue that, when multiple sources of risk are priced, solely using the combined exposure in cross-sectional regression
can produce a “tilt,” and the estimated price of risk can be insignificant. If, however, one extracts the different
components of risk, then they should appropriately measure differences in risk premia attributable to the different
sources. Likewise, net QRP, in the presence of downside risk and upside risk, may fail to account for the differences
in the risk premia across assets, which the loss and gain QRP may explain.
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Subsample Analysis We repeat the univariate sorts for two subsamples: one excludes the recent

financial crisis (January 1996 - December 2006), and another excludes the IT-crisis (January 2003

- December 2015). We report the results in Table B6 in the Internet Appendix. These results

confirm that the significant and positive cross-sectional relation between expected stock returns

and the loss and gain QRP is not driven by the two crisis periods in recent years. We also perform

the univariate sorts for the sample free from non-synchronicity of option and stock market (April

2008 - December 2015). We find the cross-sectional return predictability of both the loss and gain

QRP remain strong.

Alternative Measures To gauge the robustness of our findings to alternative measures of QRP,

we consider QRP components standardized either by the physical or risk-neutral expected quadratic

payoff,25 and the empirically feasible, yet potentially biased measure of the variance risk premium

Ṽ RP discussed in section 2.3. These results can be found in Tables B7 to B9 on the Internet

Appendix. In general, all of our results hold using these three measures.

Dividend and Non-Dividend Paying Stocks We compute option prices assuming no dividend

payments during the maturity period of an option. This is because dividends are hard to predict

thus the large measurement errors in the predicted dividends may confound our results. However,

due to the zero dividend assumption, firms which are expected to pay dividends have underpriced

put option prices and overpriced call option prices leading to a downward bias in their loss and

gain QRPs.26 We follow Cao and Han (2013) and analyze univariate sorts based on the loss and

gain QRP for non-dividend paying stocks and dividend paying stocks separately in Table B10 in

the Internet Appendix. In both subsamples, the predictability of QRP components is positive and

significant. This predictabitly is much stronger in the subsample of the non-dividend than the

subsample of the dividend paying stocks.

In summary, our results confirm that the loss and gain QRPs are significant and robust risk

measures in the cross-section. In particular, while the downside risk has been shown to be priced

25There is a large heterogeneity of QRP levels across stocks. For our cross-sectional empirical analysis, we observe
stocks that have a relatively high or low QRP because their overall level of the expected quadratic payoff (risk-neutral
or physical) is high or low. To address this issue, we follow Bollerslev, Li, and Zhao (forthcoming) and standardize
QRP by the risk-neutral or physical expected quadratic payoff, respectively.

26This potential bias is not well known in the literature, but is briefly discussed in Cao and Han (2013) and more
recently in Branger, Hülsbusch, and Middelhoff (2018).
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in previous literature, there is little evidence about the pricing of the upside risk. In this respect,

our findings regarding the gain QRP complement the existing literature.

6 Discussion

The previous sections provide extensive and robust evidence that QRP components are strong and

economically significant predictors of expected stock returns in the cross-section. We also find that

“5-1” spreads on QRP components in double-sort results of Section 5.2 show significant discrepancy,

sometimes a strong monotonic pattern, across the different quintiles of some the controlled firm

characteristics. The larger the “5-1” spreads the stronger the cross-sectional predictability. Moti-

vated by these monotonic patterns in spreads, we investigate possible explanations for the return

predictability of QRP components. Because the predictability of QRP components is strongest

among certain types of stocks relative to other categories, we argue that the underlying particu-

lar firm characteristic of these stocks might then be explaining their cross-sectional predictability.

This section ends by discussing how QRP components can enhance our understanding of existing

cross-sectional findings regarding the implied volatility smirk and idiosyncratic volatility.

Limits to Arbitrage In general, highly illiquid stocks are more costly (require higher capital)

to arbitrage, thus they carry a higher risk. This would limit rational arbitrageurs in exploiting

any arbitrage opportunity among these stocks. If this type of limit to arbitrage (e.g., Shleifer

and Vishny 1997) is driving the predictability of the loss or gain QRP, we expect to find stronger

predictability in the most illiquid stocks. Controlling for the stock illiquidity in Table 4, we find

that both the loss and gain QRPs have the highest predictability among the most illiquid stocks,

and this predictability decreases monotonically as the liquidity increases. Firms with high loss

(gain) QRP significantly outperform those with low loss (gain) QRP within all quintiles. Most

notably, among highly illiquid firms, the “5-1” spreads are almost three times as large as that for

the most liquid firms on average. These results suggest that limits to arbitrage are in part driving

the predictability of the loss and gain QRPs.27

27The idiosyncratic volatility also empirically characterizes the arbitrage risk (e.g., Ali, Hwang, and Trombley 2003;
Cao and Han 2016). Similarly, we find that the predictability by the loss and gain QRPs also increases monotonically
as the idiosyncratic volatility increases in Table 4.
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Information Asymmetry Difficulties in interpreting downside and upside risk signals from the

loss and gain QRPs may lead to potential asymmetric information among firms. Hong, Lim, and

Stein (2000) use larger analyst coverage as an indicator of less information asymmetry, as higher

analyst coverage means more diffusion of firm-specific information. We ask whether the strong

return predictability by the loss and gain QRPs is in part reflecting the degree of asymmetric infor-

mation among firms. If this is the case, we would expect to find the strongest predictability among

firms with the highest degree of information asymmetry (lowest analyst coverage). Controlling for

the average number of analysts covering the stock in Table 4, we find a monotonic pattern in “5-1”

spreads. As analysts’ coverage increases, the predictability by the loss and gain QRPs decrease and

the predictability is the strongest among stocks with the highest information asymmetry (lowest

analyst coverage). These results provide evidence that the information asymmetry partly drives

the predictability by the loss and gain QRPs.28

Demand for Lottery Kumar (2009), Bali, Cakici, and Whitelaw (2011), and Han and Kumar

(2013) document that investors have a preference for lottery-like assets. Bali, Cakici, and Whitelaw

(2011) show that a proxy for lottery demand (MAX) defined as the average of the five highest daily

returns in a given month is negatively related to expected stock returns in the cross-section. If

the predictability by the QRP components is partly driven by the investor demand for lottery-like

features, this predictability should be the strongest (weakest) among stocks with high (low) MAX.

Controlling for the stock MAX in Table 4, we find that firms with high QRP components outperform

those with low QRP components within all quintiles of MAX. Notably, we find a monotonically

increasing pattern in the “5-1” spreads. As the demand for lottery-like features increases, the

predictability by the loss and gain QRPs increases significantly. The “5-1” spreads are more than

three times higher among firms in the highest MAX quintile compared to those in the lowest MAX

quintile. These results show that investors’ demand for lottery-like features in part driving the

strong predictability by the QRP components.29

28In Table B11 and B12 of the Internet Appendix, we find that the predictability by the loss and gain QRPs is
highest among small firms, and it decreases as the firm size increases. To the extent that larger firms have less
information asymmetry than smaller firms (e.g., Hong, Lim, and Stein, 2000; Bollerslev, Li, and Zhao, forthcoming),
these results confirm that the information asymmetry may partly explain the predictability of QRP components.

29In Table B13 of the Internet Appendix, we find that the predictability by the gain QRP is highest among growth
firms, and decreases as the book-to-market ratio increases. To the extent that growth firms are mostly attractive
for their upside potentials or their lottery-like feature relative to value firms, these results further confirm that the
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Decrypting Implied Volatility Smirk versus Loss QRP In Panel A of Table 5, we further

investigate whether the SKEW and the loss QRP measure different aspects of a stock’s downside

risk. We use a triple-sorting strategy to investigate the effect of SKEW within different levels of

QRP components. Notably, we find some evidence that the cross-sectional predictability by SKEW

is significant only among stocks with high loss QRP, and within this group, it is the strongest among

stocks with high gain QRP. Firms with high loss QRP are the ones with high downside risk, while

firms with high gain QRP are the ones with low upside potential. These firms are more likely to

have expensive OTM put options and cheap ATM call options, and, thus, have the steepest implied

volatility smirk. These findings otherwise confirm, yet complement the results of Xing, Zhang, and

Zhao (2010) and Yan (2011).

Do QRP Components Rationalize the Idiosyncratic Volatility Puzzle? In Panel B of

Table 5, we examine whether the QRP components may enhance our understanding of the id-

iosyncratic volatility (IVOL thereafter) puzzle. The IVOL puzzle was first documented by Ang,

Hodrick, Xing, and Zhang (2006) and has become a popular asset pricing anomaly in the literature.

Stambaugh, Yu, and Yuan (2015) find that IVOL is negatively priced among overpriced stocks, and

has the highest predictability among overpriced stocks that are also difficult to short. We use a

triple-sorting strategy to investigate the effect of IVOL within different levels of QRP components.

Our findings suggest that the cross-sectional return predictability of IVOL is significant only among

stocks with low loss QRP, and within this group, it is the strongest among stocks with low gain

QRP. Stocks with low loss QRP are desirable to investors because their downside risk is low during

bad times. Such stocks are in high demand and are potentially overpriced. Among them, stocks

with low gain QRP are even more preferred by investors and shorting them is very risky and costly

because their upside potentials tend to be strong in bad times. Thus stocks with both low loss QRP

and low gain QRP are relatively expensive and are likely associated with difficulty to short. Our

results directly relate to the findings reported in Stambaugh, Yu, and Yuan (2015), and extends

their results using our measures of downside risk (loss QRP) and upside risk (gain QRP) to a large

sample of optionable stocks.30

lottery demand may partly explain the predictability of the QRP components.
30Reading between the lines, the connection of our findings to the Stambaugh, Yu, and Yuan’s results points to

a link between QRP components and stock overpricing/underpricing which in practice can be appreciated through
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Trading costs The average excess returns and alphas from the value-weighted single sorts based

on either loss or gain QRP may seem relatively high.31 One might wonder whether these high alphas

can be achieved among firms that are easier to trade (liquid firms with low limits to arbitrage) and

tentatively have lower trading costs. In Table 4 we see that among the most liquid stocks, the

alpha decreases by 32.2% to 1.89% per month (t-statistic of 3.85). Next, we see that among stocks

where there are low limits to arbitrage (i.e., low idiosyncratic volatility), we similarly find that the

alpha decreases by 65.2% to 0.97% per month (t-statistic of 3.35). Therefore, indirectly accounting

for trading costs decreases the profitability of the trading strategy based on loss and gain QRP

to levels comparable to other well-studied anomalies (e.g. Ang, Hodrick, Xing, and Zhang, 2006

find that sorting stocks by idiosyncratic volatility yields a spread of -1.38%). Further, the average

turnover rate of the loss (gain) QRP quintile portfolios is 51.5% (52.0%). Following Jegadeesh and

Titman (1993), we account for trading costs by considering a 0.5% one-way transaction cost. This

means that the long-short portfolio alphas based on loss (gain) QRP decrease to 2.28% (2.26%)

after accounting for transaction costs.

Microstructure effects Another possible explanation for the high spreads in our single-sorts is

that loss and gain QRP are in part related to microstructure effects that are not truly tradable.

Thus, once controlling for these effects, the spreads will shrink. To examine this possibility, we

follow Ang, Hodrick, Xing, and Zhang (2006) and look at alternative trading strategies based on

loss or gain QRP. The portfolio formation strategies follow Jegadeesh and Titman (1993) and are

based on an estimation period of L months, a waiting period of M months, and a holding period of

N months, together forming the L/M/N strategy. The main results in our paper are based on the

1/0/1 strategy, in which we sort stocks into quintile portfolios based on their average level of loss

or gain QRP in month t, and then, for each quintile we use end-of-month market capitalizations to

valuation ratios such as book-to-market. At times, growth stocks may be seen as expensive and overvalued, as they
are generally perceived by investors as stocks with large upside potential. Consistent with that view, we find that gain
QRP has the highest predictability among firms with low book-to-market ratio. To the contrary, some investors may
prefer value stocks which are generally perceived as undervalued by the market. These investors are however aware
of the large downside risk of value firms, induced by operating leverage (see for example Gaŕıa-Feijóo and Jorgensen,
2010 and Hsieh and Lee, 2010). Consistent with that view, we find that loss QRP has the highest predictability
among firms with high book-to-market ratio. These results are available in Table B13 in the Internet Appendix.

31Previous literature on other anomalies also finds high average excess returns, e.g. Cooper, Gulen, and Schill
(2008) find that sorting firms by their asset growth yield monthly excess returns on the long-short portfolio of -1.73%
(t-statistic of -8.45). Yan (2011) sorts stocks based on their implied volatility slope and finds risk-adjusted returns
for a long-short portfolio of 1.9% per month (t-statistic of 9.64).
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form a value-weighted portfolio and measure its excess returns over month t+1. In Table B14 of the

Internet Appendix, we report results for two different waiting periods, in which we form portfolios

based on their average loss or gain QRP in month t − 1 or month t − 3, respectively. We find

that if we increase the waiting period to 1 (3) months, the spread for loss QRP decreases by 31.5%

(34.8%) to 1.91% (1.82%) with a t-statistic of 5.19 (5.58). Similarly, for gain QRP we find that the

spread decreases by 18.7% (45.3%) to 2.26% (1.52%) with a t-statistic of 6.30 (4.16). These results

show that the predictability of loss and gain QRP is in part driven by microstructure effects that

are not truly tradable. Once we account for these microstructure effects, we find spreads that are

comparable to other well-known anomalies.32

To summarize, the cross-sectional predictability by the loss and gain QRP is strong and rein-

forced among certain categories of stocks. It should however be noticed that, while at the first

glance the spreads on the loss and gain QRP sorting strategies may seem high, once we indirectly

account for various market frictions, we find that these spreads are more in line with previous

literature on well-known anomalies.

7 Conclusion

We decompose the quadratic payoff on a stock into its loss and gain components and measure

the premia associated with their fluctuations using stock and option data from a large cross-

section of firms. The quadratic risk premium (QRP), defined as the difference between the risk-

neutral and physical expectations of quadratic payoff, represents the premium paid to insure against

fluctuating loss uncertainty (loss QRP), net of the premium received to compensate for fluctuating

gain uncertainty (gain QRP). Thus, the loss QRP measures the downside risk while the gain QRP

measures the upside risk of an individual firm.

We show that the heterogeneity in the loss and gain QRPs across stocks is associated with

differences in expected returns in the cross-section. Our findings suggest that expected stock

returns in the cross-section are positively related to the loss and gain QRPs. On the other hand,

we find no evidence of a cross-sectional relation between the net QRP and expected returns. Sorting

stocks into portfolios based on their individual loss (gain) QRP results in an economically large

32In Table B15 of the Internet Appendix, we present single-sort results after removing microcaps from our sample
(stocks with beginning of month price less than 5 USD). The spreads are virtually unchanged from Table 2.
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monthly expected return spread between the stocks in the highest and lowest quintiles of 3.08%

(2.95%). The return spreads remain highly statistically significant and economically important in

double-sorting strategies and in Fama and MacBeth (1973) regressions controlling for exposures to

various systematic risk factors and other firm characteristics.

In particular our result regarding the gain QRP shows that the upside risk is significantly and

robustly priced even after the downside risk has already been accounted for. Since there is little

evidence in the literature about the pricing of the upside risk, this result on gain QRP constitutes

an important contribution.

Crucially, our results suggest that when analyzing the relation between expected stock returns

and individual firm QRP, it is imperative to decompose the QRP into its loss and gain components.

An interesting extension of our empirical analysis would be to expand the cross-section to include

international firms. Another interesting empirical extension would be to examine the cross-sectional

relation between the quadratic risk premium and expected returns for other asset classes such as

corporate bonds, currencies and commodities.
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Figure 1: S&P 500 Quadratic Payoff and Realized Variance (Daily Returns)

In Panels A and B of this figure, we plot the time-series of the S&P 500 realized autocovariance (RA) and standardized realized

autocovariance, respectively. In Panel C, we plot the quadratic loss (QL) and loss realized variance (RV), while in Panel D we

plot the quadratic gain (QG) and the gain RV. Realized autocovariance and standardized realized autocovariance are defined

as following:

RA =
r2 −RV

2
, Std RA =

r2 −RV
r2 +RV

.

where r2 is the quadratic payoff, and RV is the realized variance. We obtain the expression for RA by solving for it in Equation

(6). Standardized realized covariance multiplied by 100 yields the percentage of equity uncertainty represented by RA. Realized

autocovariance, and all measures of the quadratic payoff and realized variance are in monthly squared percentage terms. The

sample period is from January 1996 to December 2015.
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Figure 2: Market and Firm Median Loss and Gain QRP

We plot the cross-sectional median firms’ loss and gain quadratic risk premium (QRP), and the time series of the market loss

and gain QRP. The left hand y-axis shows the values of the firm QRP, while the right hand y-axis shows the values for the

market QRP. QRP are in monthly squared percentage terms. The sample period is from January 1996 to December 2015.
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Table 1: Descriptive Statistics and Cross-Sectional Correlations

In Panel A we report the time-series mean, min, max, standard deviation (StdDev), skewness, excess kurtosis, and persistence

(AR(1)) of the firm-level median and market quadratic risk premium (QRP l, QRP g , QRP ) and risk-neutral skewness (SKEW ).

We also report these statistics for the firm-level median stock illiquidity (ILLIQ), idiosyncratic volatility (IV OL), book-to-

market (B/M), past 12-month cumulative excess return (P12M), and one-month cumulative excess return (P01M). All statistics

are monthly values. The mean, min, max, and standard deviation of QRP are in percentage-square units. The mean, min, max,

and standard deviation of IV OL and P12M/P01M are in percentage units. Following Amihud (2002), ILLIQ is multiplied by

103. In Panel B, we report correlations between our firm-level variables. We compute the correlations in two steps. First, in

each month t we compute cross-sectional correlations among all variables. This yields a monthly time-series of cross-sectional

correlations. Next, we take the time-series average of these correlations, and these are the correlations reported. The sample

period is from January 1996 to December 2015.

Panel A: Descriptive Statistics

Mean Min Max StdDev Skewness Kurtosis AR(1)

QRP l 32.57 -0.70 211.35 33.82 2.41 10.60 0.83

QRP g 13.85 -20.78 69.59 10.83 1.46 9.00 0.66

QRP 13.82 -23.83 204.80 30.29 2.66 13.73 0.67

ILLIQ 4.8e-3 7.9e-4 0.02 1.1e-4 0.90 2.81 0.95

SKEW -0.51 -1.31 0.21 0.22 -0.06 2.50 0.73

IV OL 2.04 1.13 4.16 0.70 0.99 3.20 0.91

B/M 0.45 0.30 1.03 0.09 1.82 8.05 0.93

P12M 6.19 -49.50 68.52 19.45 -0.02 3.80 0.92

P01M 0.32 -22.52 16.78 5.30 -0.69 5.06 0.13

QRP l
m 15.65 -3.66 80.02 14.32 1.65 6.22 0.79

QRP g
m 2.92 -14.52 47.74 7.11 1.82 12.58 0.49

QRPm 12.73 -17.48 79.17 16.84 1.16 4.53 0.66

SKEWm -1.96 -3.79 -0.73 0.59 -0.48 2.88 0.86

Panel B: Cross-sectional Correlations

QRP g QRP ILLIQ SKEW IV OL B/M Size P12M P01M

QRP l -0.20 0.87 0.11 -0.06 0.14 0.03 -0.04 5.4e-4 0.05

QRP g -0.61 -0.01 -0.03 0.15 -0.02 -0.04 0.08 0.09

QRP 0.09 -0.04 0.03 0.03 -0.01 -0.03 1.6e-3

ILLIQ 0.10 0.20 0.09 -0.04 -0.09 -0.02

SKEW 0.15 -0.01 -0.17 0.03 -0.16

IV OL 0.06 -0.15 -0.08 0.11

B/M -0.05 -0.18 -0.08

Size 0.02 0.01

P12M 0.01
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Table 2: Univariate Sorts

In Panel A, at the end of month t we sort firms into quintiles based on their average loss QRP (QRP l) during month t, so that

Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. We then form value-weighted portfolios of

these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns during month t+ 1

for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio. Similarly, in Panel

B and C, we sort firms into quintiles based on their average gain QRP (QRP g) and net QRP (QRP ), respectively. We also

compute the Jensen alpha of each quintile portfolio with respect to the Fama-French five-factor model (Fama and French, 2015)

by running a time-series regression of the monthly portfolio returns on monthly MKT , SMB, HML, RMW , and CMA. The

t-statistics test the null hypothesis that the average monthly cumulative return of each respective portfolio equals zero, and they

are computed using Newey and West (1987) standard errors to account for autocorrelation, and are reported in parentheses.

Significant t-statistics at the 95% confidence level are boldfaced. QRP is reported in monthly square percentage units. Data

are from January 1996 to December 2015.

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l -145.96 8.54 33.00 67.42 231.63 QRP g -59.68 -2.66 14.07 38.42 163.99

E [r] -0.98 0.29 0.98 1.35 2.10 3.08 -0.97 0.17 0.84 0.90 1.98 2.95

(-2.15) (0.98) (2.97) (3.12) (3.92) (7.79) (-2.31) (0.54) (2.77) (2.28) (3.80) (8.51)

alpha -1.59 -0.19 0.43 0.65 1.20 2.79 -1.59 -0.34 0.30 0.25 1.19 2.78

(-7.47) (-1.72) (3.75) (4.02) (4.59) (6.82) (-8.49) (-3.11) (3.26) (2.01) (5.14) (7.94)

Panel C: Firm Net QRP

Quintiles

1 2 3 4 5 5-1

QRP -240.41 -21.57 14.07 51.88 236.54

E [r] 0.10 0.57 0.59 0.71 0.66 0.56

(0.19) (1.79) (2.03) (1.94) (1.45) (1.74)

alpha -0.61 0.05 0.11 0.08 -0.15 0.46

(-3.05) (0.44) (1.66) (0.60) (-0.72) (1.33)
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Table 3: Conditional Double Sorts on Systematic Risk

Stocks are first sorted in quintiles based on their exposure to systematic risk factors including: Farago and Tédongap (2018) five

GDA factors (market factor, the market downside factor, the downstate factor, the volatility factor and the volatility downside

factor), market loss and gain quadratic risk premium (Bollerslev, Tauchen, and Zhou, 2009), and market risk-neutral skewness

(Chang, Christoffersen, and Jacobs, 2013). Next, stocks within each quintile of the given systematic risk factor exposure are

further sorted in quintiles based on their loss quadratic risk premium in Panel A, and gain quadratic risk premium in Panel B.

The table reports the difference in average excess returns between the top and the bottom quintile (E [r]) based on loss and gain

QRP and the Jensen alphas with respect to the Fama-French five-factor model (Fama and French, 2015). t-statistics based on

standard errors computed using the Newey and West (1987) procedure are reported in parentheses. Significant t-statistics at

the 95% confidence level are boldfaced. Data are from January 1996 to December 2015.

Panel A: Loss QRP Panel B: Gain QRP

Quintiles Quintiles

1 2 3 4 5 1 2 3 4 5

Market Factor Market Factor

E [r] 2.45 2.06 2.49 3.48 4.40 E [r] 2.57 2.20 2.73 3.13 3.73

(4.80) (5.07) (5.05) (7.11) (7.12) (5.36) (5.26) (7.95) (7.15) (5.92)

alpha 2.47 2.08 2.44 3.19 4.37 alpha 2.59 2.02 2.51 2.83 3.57

(4.40) (5.13) (4.09) (6.15) (5.90) (3.94) (3.79) (7.28) (6.58) (4.23)

Market Downside Factor Market Downside Factor

E [r] 4.08 3.01 2.71 2.14 3.72 E [r] 3.56 2.34 2.94 2.95 4.54

(6.32) (5.41) (7.02) (4.62) (6.16) (5.71) (5.35) (7.41) (5.45) (8.81)

alpha 4.11 2.99 2.42 2.04 3.80 alpha 3.42 2.37 2.67 2.83 4.36

(4.51) (4.29) (6.06) (4.91) (5.23) (4.12) (4.85) (5.75) (3.66) (6.28)

Downstate Factor Downstate Factor

E [r] 3.85 3.21 2.86 2.65 3.66 E [r] 3.51 2.61 2.73 2.45 4.10

(6.46) (6.22) (5.96) (5.26) (6.97) (5.80) (5.39) (6.31) (5.67) (8.50)

alpha 3.72 3.32 2.58 2.86 3.60 alpha 3.28 2.58 2.49 2.29 3.99

(5.02) (4.88) (4.39) (5.49) (5.53) (4.42) (4.21) (4.85) (4.00) (6.29)

Volatility Factor Volatility Factor

E [r] 4.41 2.90 2.17 2.40 3.54 E [r] 3.84 2.85 2.44 2.13 3.79

(6.96) (5.67) (5.00) (5.53) (6.52) (6.91) (5.79) (5.42) (5.55) (6.83)

alpha 4.34 3.09 2.00 2.49 3.60 alpha 3.67 2.57 2.34 2.00 3.53

(5.04) (4.89) (4.36) (5.05) (5.46) (5.31) (3.71) (4.11) (5.31) (4.25)

Volatility Downside Factor Volatility Downside Factor

E [r] 3.28 3.04 2.21 3.14 3.80 E [r] 3.41 2.93 1.96 2.27 4.32

(5.75) (5.45) (4.82) (5.90) (6.35) (5.74) (6.39) (4.82) (4.82) (9.02)

alpha 3.43 3.11 2.19 2.94 3.73 alpha 3.45 2.76 1.81 1.85 4.08

(4.57) (4.72) (3.80) (4.86) (4.92) (3.87) (4.72) (4.12) (3.56) (6.61)

Market Loss QRP Market Gain QRP

E [r] 3.27 2.79 2.87 2.62 4.60 E [r] 3.26 2.68 1.96 2.59 4.00

(5.82) (5.56) (6.00) (5.34) (7.88) (6.31) (8.05) (4.98) (5.27) (7.24)

alpha 3.42 2.72 2.64 2.64 4.61 alpha 4.00 2.00 1.62 2.76 3.41

(4.71) (4.17) (5.08) (5.55) (5.52) (7.29) (4.49) (3.64) (4.77) (6.09)

Market Risk-Neutral Skewness Market Risk-Neutral Skewness

E [r] 3.47 2.37 2.12 3.07 4.60 E [r] 4.02 2.12 2.34 2.77 4.45

(5.90) (5.10) (4.66) (6.33) (7.09) (5.91) (4.69) (5.38) (6.77) (8.15)

alpha 3.14 2.40 2.34 2.87 4.55 alpha 3.75 1.92 2.03 2.60 4.22

(4.30) (4.03) (3.74) (4.87) (5.25) (3.94) (3.90) (4.50) (4.63) (6.59)
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Table 4: Conditional Double Sorts on Firm Characteristics

Stocks are first sorted in quintiles based on different characteristics: implied volatility smirk (Xing, Zhang, and Zhao, 2010;

Yan, 2011), risk-neutral skewness (Bakshi, Kapadia, and Madan, 2003), relative signed jump variation (Bollerslev, Li, and Zhao,

forthcoming), idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006), illiquidity (Amihud, 2002), number of analysts

covering the stock (Hong, Lim, and Stein, 2000), and a proxy for lottery demand (Bali, Cakici, and Whitelaw, 2011), respectively.

Next, stocks within each characteristic quintile are sorted in quintiles based on loss QRP (Panel A), and gain QRP (Panel B).

The table reports the difference in average excess returns between the top and the bottom quintile (E [r]) based on loss or gain

QRP and the Jensen alphas with respect to the Fama-French five-factor model (Fama and French, 2015). t-statistics based on

standard errors computed using the Newey and West (1987) procedure are reported in parentheses. Significant t-statistics at

the 95% confidence level are boldfaced. Data are from January 1996 to December 2015.

Panel A: Loss QRP Panel B: Gain QRP

Quintiles Quintiles

1 2 3 4 5 1 2 3 4 5

Implied volatility smirk Implied volatility smirk

E [r] 4.02 4.01 2.94 2.87 2.45 E [r] 4.27 3.25 3.19 2.54 2.40

(7.15) (7.38) (5.93) (4.52) (4.34) (8.86) (6.87) (6.45) (6.01) (4.93)

alpha 3.81 3.70 2.94 2.93 2.51 alpha 4.30 2.85 3.03 2.49 2.15

(5.48) (5.28) (5.26) (3.63) (4.06) (7.47) (5.40) (5.50) (4.63) (3.33)

Firm Risk-Neutral Skewness Firm Risk-Neutral Skewness

E [r] 2.14 2.70 3.44 4.55 4.59 E [r] 1.75 2.57 3.08 3.78 4.49

(4.04) (4.75) (5.14) (5.73) (6.00) (3.33) (5.93) (4.66) (6.60) (6.85)

alpha 2.13 2.71 3.44 4.52 4.52 alpha 1.60 2.35 3.02 3.60 4.22

(4.30) (4.73) (5.06) (5.67) (5.94) (2.87) (5.08) (4.47) (6.32) (6.36)

Relative Signed Jump Variation Relative Signed Jump Variation

E [r] 4.06 2.82 2.66 2.78 2.86 E [r] 3.26 3.05 2.62 2.79 3.31

(5.84) (4.95) (4.37) (5.22) (4.33) (5.84) (5.12) (5.40) (3.54) (4.77)

alpha 3.96 2.64 2.31 2.77 2.85 alpha 2.78 3.12 2.39 2.88 3.10

(5.34) (4.31) (4.05) (5.17) (4.47) (4.94) (5.29) (5.13) (3.60) (4.56)

Idiosyncratic Volatility Idiosyncratic Volatility

E [r] 0.94 2.68 3.23 3.87 5.58 E [r] 1.18 1.87 2.48 4.03 5.84

(3.53) (6.26) (4.81) (5.17) (4.39) (3.36) (4.26) (5.51) (6.82) (5.99)

alpha 0.97 2.86 3.13 3.97 5.13 alpha 1.05 1.55 2.09 3.92 5.87

(3.35) (6.04) (4.48) (5.06) (4.27) (3.01) (3.12) (4.69) (6.56) (6.08)

Stock illiquidity Stock illiquidity

E [r] 1.84 2.75 3.16 4.42 4.93 E [r] 1.67 2.32 3.73 4.29 5.09

(4.96) (6.99) (7.23) (8.53) (9.50) (4.96) (6.00) (7.77) (8.41) (10.87)

alpha 1.89 2.60 2.99 4.35 4.98 alpha 1.67 2.26 3.81 4.09 4.88

(3.85) (4.66) (5.57) (6.02) (6.96) (4.17) (4.28) (5.70) (5.74) (8.00)

Analysts’ coverage Analysts’ coverage

E [r] 3.57 4.23 3.66 2.30 1.82 E [r] 4.52 3.98 2.62 2.28 1.90

(6.81) (6.82) (7.98) (4.83) (4.63) (8.63) (7.31) (5.83) (5.27) (5.43)

alpha 3.50 4.17 3.54 2.14 1.89 alpha 4.44 4.02 2.25 2.03 1.89

(6.37) (4.89) (5.46) (3.21) (3.74) (5.80) (6.05) (3.97) (4.00) (4.78)

Lottery demand Lottery demand

E [r] 1.64 2.13 3.70 4.64 5.43 E [r] 1.23 2.10 3.22 3.91 5.12

(5.31) (5.96) (7.01) (7.37) (7.23) (3.78) (5.79) (6.30) (7.83) (8.31)

alpha 1.54 2.04 3.86 4.46 5.40 alpha 1.18 2.03 2.84 3.64 4.95

(4.10) (5.18) (5.14) (5.83) (5.09) (2.97) (4.30) (4.80) (5.45) (5.87)
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Table 5: Triple Sorts on SKEW and Idiosyncratic Volatility

In Panel A, stocks are sorted in terciles based on their loss QRP. Next, stocks within each tercile of loss QRP are further sorted

in terciles based on their gain QRP. Finally, within each tercile of gain QRP stocks are sorted in terciles based on SKEW (Xing,

Zhang, and Zhao, 2010; Yan, 2011). In Panel B, stocks are independently sorted every month in terciles based on their gain

quadratic risk premium (QRP), loss QRP and idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006), respectively.

Next, we take the intersection of these tercile portfolios. We report Jensen alphas with respect to the Fama-French five-factor

model (Fama and French, 2015) for all tercile portfolios as well as for the difference between the top and bottom tercile (H–L).

t-statistics are computed using Newey and West (1987) standard errors, and are reported in parentheses. Significant t-statistics

at the 95% confidence level are boldfaced. The sample period is from January 1996 to December 2015.

Panel A: Conditional Triple Sorts on Loss QRP, Gain QRP, and SKEW

Loss QRP

L M H

Gain QRP Gain QRP Gain QRP

S
K

E
W

L M H L M H L M H

L -3.84 -1.00 -1.34 L -0.92 -0.13 1.03 L -0.23 1.26 3.99

M -3.77 -1.19 -0.79 M -1.08 -0.01 1.14 M -0.79 0.61 3.09

H -4.10 -1.37 -2.12 H -0.99 -0.23 0.46 H -1.29 0.25 2.46

H–L -0.26 -0.37 -0.78 H–L -0.06 -0.10 -0.57 H–L -1.06 -1.01 -1.52

(-0.67) (-1.80) (-1.93) (-0.21) (-0.41) (-1.63) (-2.19) (-2.45) (-2.69)

Panel B: Unconditional Triple Sorts on Loss QRP, Gain QRP, and IVOL

Loss QRP

L M H

Gain QRP Gain QRP Gain QRP

I
V
O
L

L M H L M H L M H

L -2.74 -0.93 -0.44 -0.91 -0.18 1.09 -0.57 1.09 2.49

M -4.07 -1.73 -1.01 -0.89 -0.16 0.65 -1.00 0.65 2.84

H -6.04 -2.90 -1.84 -1.54 -0.60 0.65 -1.57 0.65 2.86

H–L -3.31 -1.97 -1.40 -0.63 -0.42 -0.44 -1.00 -0.44 0.45

(-7.43) (-5.57) (-5.05) (-1.34) (-1.02) (-0.89) (-1.86) (-0.89) (0.78)
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Table 6: Fama-MacBeth Regressions Controlling for Systematic Risk

This table reports the time-series average of the monthly estimated coefficients for different factor models including firm quadratic risk premium (QRP l, QRP g

and QRP ). In each regression from III to VII we include the firm loss and gain quadratic risk premium with different factor models: CAPM, market skewness

factor model (Chang, Christoffersen, and Jacobs, 2013), market quadratic risk premium model (Bollerslev, Tauchen, and Zhou, 2009), Carhart four-factor model,

and the GDA five-factor model (Farago and Tédongap, 2018), respectively. All coefficients are estimated using the Fama and MacBeth (1973) two-step regression

applied on 5150 individual firms. In the first step, we regress six months of daily excess returns of the 5150 firms on the different factor models to obtain their

respective betas. In the second step, we run cross-sectional regressions of month t + 1 firm excess returns against the estimated betas and firm quadratic risk

premium. t-statistics are computed using Newey and West (1987) standard errors, and are reported in parentheses. Significant t-statistics at the 95% confidence

level are boldfaced. Adjusted R2 is reported in percentage. Data are from January 1996 to December 2015.

I II III IV V VI VII

Cst 0.01 Cst -7.5e-4 Cst 0.01 Cst 0.01 Cst 0.01 Cst 0.01 Cst 0.01
(0.08) (-3.24) (0.57) (0.58) (0.69) (0.34) (0.78)

QRP 0.07 QRP l 0.616 QRP l 0.609 QRP l 0.610 QRP l 0.620 QRP l 0.610 QRP l 0.624
(1.60) (8.90) (11.24) (11.28) (12.70) (14.10) (12.13)

QRP g 1.348 QRP g 1.444 QRP g 1.440 QRP g 1.461 QRP g 1.475 QRP g 1.467
(12.06) (14.97) (14.79) (15.72) (18.30) (16.16)

βm,CAPM -0.01 βm,SKEW -0.01 βm,BTZ -0.01 βm,CH -0.01 βm,W -0.01
(-0.88) (-0.08) (-0.43) (-0.28) (-0.03)

βMSKEW 0.09 βMQRP l -1.9e-6 βsmb -2.9e-3 βX 1.4e-5

(1.03) (-0.45) (-3.37) (3.29)
βMQRP g 2.9e-6 βhml -7.2e-4 βD 0.26

(2.11) (-0.55) (5.02)
βV IX 8.4e-6 βmom 2.3e-3 βWD -0.01

(1.49) (1.97) (-3.13)
βXD 1.3e-5

(1.83)

Adj. R2 1.22 4.22 7.88 8.26 9.21 11.91 9.45
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Table 7: Fama-MacBeth Regressions Controlling for Other Firm Characteristics

This table reports the time-series average of the monthly estimated coefficients for factor models including firm

quadratic risk premium (QRP l, QRP g and QRP ). In regression VIII we include the firm loss and gain quadratic risk

premium with the relative signed jump variation (RSJ) from Bollerslev, Li, and Zhao (forthcoming). In regression IX

we include the firm loss and gain quadratic risk premium with all the firm characteristics: RSJ , idiosyncratic volatility

(IV OL) computed as in Ang, Hodrick, Xing, and Zhang (2006), past 1-month cumulative excess return (P01M), past

12-month cumulative excess return (P12M), size, book-to-market (B/M), illiquidity (ILLIQ), risk-neutral skewness

(FSKEW ), the loss and gain realized semi-variances (RV l and RV g), and firm risk neutral skewness. All coefficients

are estimated using the Fama and MacBeth (1973) two-step regression applied on 5150 individual firms. We run

cross-sectional regressions of month t + 1 firm excess returns against firm characteristics and firm quadratic risk

premium. t-statistics are computed using Newey and West (1987) standard errors, and are reported in parentheses.

Significant t-statistics at the 95% confidence level are boldfaced. Adjusted R2 is reported in percentage. Data are

from January 1996 to December 2015.

I II VIII IX

Cst 0.01 Cst -7.5e-4 Cst -7.7e-4 Cst -2.3e-3
(0.08) (-3.24) (-3.79) (-0.76)

QRP 0.07 QRP l 0.616 QRP l 0.625 QRP l 0.848
(1.60) (8.90) (8.75) (13.37)

QRP g 1.348 QRP g 1.359 QRP g 1.677
(12.06) (12.55) (13.02)

RSJ -0.01 RSJ 4.0e-4
(-2.62) 0.29

IV OL -0.20
(-2.88)

P01M -0.02
(-2.90)

P12M 1.6e-3
(0.62)

Size 3.5e-4
(0.61)

B/M 0.01
(2.32)

ILLIQ -0.38
(-1.04)

RV l -0.11
(-3.05)

RV g -0.17
(-3.06)

FSKEW 0.01
(6.25)

Adj. R2 1.22 Adj. R2 4.22 Adj. R2 5.09 Adj.R2 11.65
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